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ABSTRACT

As a primary component of a Pavement Management System (PMS), prediction

models are crucial for one or more of the following analyses:  maintenance planning,

budgeting, life-cycle analysis, multi-year optimization of maintenance works program, and

authentication of design alternatives.  The main focus of the study is to develop pavement

deterioration models.  Four cycles of pavement condition data and the required inventory

data are compiled from the Mississippi Department of Transportation (MDOT) PMS

database.  Though regression is the primary tool for developing models, Bayesian

regression is also employed whenever feasible.  Expert opinions regarding the major

distresses in pavements were compiled, augmenting the field data.  The study begins with a

review of relevant literature with the aim of identifying the commonly employed

explanatory variables and various model forms.

Five pavement families are identified for the model development:  original

flexible, overlaid flexible, composite, jointed concrete, and continuously reinforced

concrete pavements.  Models for each family are developed for predicting distresses,

roughness, and a composite condition index (Pavement Condition Rating).  The database

employed is divided into ‘in-sample’ data constituting a major portion (70 percent) with

‘out-of-sample’ data comprising the remaining.  Totally 26 models are developed, with the

in-sample data:  six for original flexible, six for overlaid flexible, six for composite, and

four each for jointed concrete and continuously reinforced concrete pavements.  The

models are subsequently verified with the ‘out-of-sample’ data.

Among the scores of model forms attempted, power form or some variation of it

fits all of the models while satisfying crucial boundary conditions.  The out-of-sample data
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provides an independent database to verify the validity of the models.  A sensitivity

analysis of the model equation is presented in each case, substantiating the predictive

capability of the model.  In seven cases, incorporating expert opinion in the field data,

employing Bayesian regression resulted in better prediction models.  While these equations

form a nucleus for condition prediction of MDOT pavement network, for project level

analyses, a shift adjustment of the prediction should be made to match the current

observation.

The feedback program developed in this study computes load index of original

pavements of all types and overlaid flexible pavements.  Load index is the ratio of the

actual ESAL sustained by the pavement and the design ESAL.  Also included is a routine to

verify/substantiate the prediction models by comparing the actual to the predicted

distresses.
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METRIC CONVERSION CHART

To convert U.S. units to metric units, the following conversion factors should be used:

Multiply U.S. Units By To Obtain Metric Units

mils 0.0254 millimeters (mm)

inches (in) 2.5400 centimeters (cm)

feet (ft) 0.3048 meters

yards (yd) 0.9144 meters (m)

square inches (in2) 6.4516 square centimeters (cm2)

square feet (ft2) 0.0929 square meters (m2)

square yards (yd2) 0.8361 square meters (m2)

cubic inches (in3) 16.3872 cubic centimeters (cm3)

cubic feet (ft3) 0.0283 cubic meters (m3)

cubic feet (ft3) 28.3162 liters (1)

cubic yards (yd3) 0.7646 cubic meters (m3)

gallons (gal) 3.7854 liters (1)

pounds (lbs) 0.4536 kilograms (kgs)

pounds (lbs) 453.592 grams (g)

ounces (oz) 28.3495 grams (g)

pounds per kilograms per
square inch (psi) 0.0703 cubic meter (kgs/cm2)

pounds per kilograms per
cubic foot (lbs/ft3) 16.091 cubic meter (kgs/m3)

miles per hour (mph) 1.609 kilometers per hour (km/hr)

degrees Fahrenheit (ºF) degrees  Celsius (ºC)
minus 32º 5/9 ºC = 5/9 (ºF-32º)

British thermal units (BTU) 252.0 calories (cal)
TABLE OF CONTENTS
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CHAPTER 1

INTRODUCTION

1.1  GENERAL

With a large network of highways in place, the need for preservation and efficient

maintenance of existing highways is growing.  To find cost-effective strategies for

providing, evaluating, and maintaining pavements in a serviceable condition, highway

agencies are resorting to Pavement Management Systems (PMSs).  However, with

pavements deteriorating continually, preserving and managing pavements has become a

complex task.  The problem is further compounded by the fact that the funds available for

maintenance and rehabilitation are dwindling.  Maintenance at a given time necessitates the

evaluation of pavement condition.  The present condition of a network can be evaluated by

condition surveys.  For efficient and economical maintenance of pavements, not only the

present condition but also the future condition of pavements should be considered.

Prediction of future pavement condition, therefore, is a key component of a Pavement

Management System.

1.2  PAVEMENT MANAGEMENT SYSTEM

A Pavement Management System helps in making informed decisions enabling the

maintenance of the network in a serviceable and safe condition at a minimum cost to both

the agency and the road users.  To adequately meet this requirement, well-documented

information is essential to make defensible decisions on the basis of sound principles of

engineering and management.  The objective of establishing a PMS is to improve the

efficiency of this decision making, expand its scope, provide feedback about the

consequences of decisions, and ensure consistency of decisions made at different levels
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within an organization.  The elements and products of a Pavement Management System

include:

• an inventory of pavements in the network,

• a database of information pertinent to past and current pavement condition,

• an analysis program which, among other things, makes use of prediction models for

forecasting pavement condition in the future or in the design horizon

• long range budgeting provisions

• prioritizing the annual work program,

• a basis for communication of the agency’s plans,

• a feedback system.

The modules of the PMS (2) adopted by the Mississippi Department of Transportation

(MDOT), with the logical structure, are shown in Figure 1.  The basic modules include:

• A database that contains inventory, condition, traffic, and historical data

• A Pavement Analysis Program (PAP), which determines the condition of a pavement

and selects a maintenance action based on its condition and other criteria.  Also, it

establishes an annual work program and estimates the budget required.  A number of

reports are generated from the analysis.

Many other modules are established which supply the necessary inputs for the PMS

analysis.  Deterioration models, maintenance and rehabilitation policies, their unit costs,

and vehicle operating costs are such inputs.  Deterioration models, which form an

important element of PMS analysis, comprise this study.

Thus, a Pavement Management  System  can  be applied in the areas of planning,
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budgeting, scheduling, performance evaluation, and research.  It can be used for

prioritization, funding, setting strategies, selecting alternatives, identifying problem areas,

simplifying communications with the legislature, and providing general and specific

information which is useful to decision makers and management.  All these activities of a

PMS use deterioration models.

1.3  PREDICTION MODELS

A pavement deterioration model or prediction model is a “mathematical

description of the expected values that a pavement attribute will take during a specified

analysis period” (3).  An attribute is a property of a pavement section or class of

pavements that provides a significant measure of the behavior, performance, adequacy,

cost, or value of the pavement (3).  In other words, it is a mathematical description that can

be used to predict future pavement deterioration based on the present pavement condition,

deterioration factors, and the effect of maintenance (4).

The importance of accurate prediction of future pavement condition cannot be over-

emphasized as it affects many other components of a Pavement Management System.

Prediction models are indispensable for many processes of decision-making as they are

useful in establishing answers to the questions of what, where, and when, with respect to

maintenance actions.  Simply put, the prediction models enable us to determine the type of

maintenance treatment to be adopted, the portions of the network requiring treatment, and

the timing of the maintenance actions.  Life-cycle analysis and evaluation of rehabilitation

alternatives can be performed using the prediction models.  Used at network level,

pavement deterioration models are helpful in planning, programming, and budgeting.

Budget analyses include the following:
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• Estimating the funds required to bring the total network from its current condition

level to a desired condition level

• Estimating the budget required to maintain the network at specific levels of

performance over multiple years

• Prioritizing projects when the available funding is less than that required to meet

specific performance objectives.

Also, the ability to predict future pavement conditions can lead to the development

of multi-year, network-level optimal maintenance actions.  Prediction models permit

increased understanding of pavement behavior so that steps can be taken to reduce the

development of distress or to extend the service life of pavements.  This includes an

evaluation of cost-effectiveness of pavement maintenance treatments.  Evaluation and

refinement of design procedures are possible utilizing prediction models.

Other uses of prediction models at the network level include studies on pavement

costs for different legal vehicle weights, sizes, tire pressures, and suspension systems,

determination of equitable permit fees for overweight vehicles, etc.  Since these network

level usage predictions affect the level of taxation and fees, they form a rational basis for

all public investments in highway transportation.

At the project level, prediction models are used to design pavements, to perform

life-cycle cost analyses, to select optimal designs with least total costs, and in trade-off

analyses in which the annualized costs of new construction, maintenance, rehabilitation,

and user costs are considered for a specific pavement design.  Simply put, prediction

models affect a wide spectrum of services within a Pavement Management System.  Better
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prediction models make a better Pavement Management System, which leads to

considerable cost savings (5-9).

1.4  MANIFESTATION OF PAVEMENT DISTRESSES

Typically, the deterioration of a pavement is represented by the development of

distresses leading to a reduction in serviceability and/or structural breakdown of the

pavement.  Distress itself is a physical manifestation of damage caused to a pavement by

loadings, environmental factors, etc.  There are different kinds of distresses identified for

various types of pavements.  The Strategic Highway Research Program (SHRP)(10) lists

15 distress types for asphalt concrete surfaced pavements, sixteen for jointed concrete

surfaced pavements, and fifteen for continuously reinforced concrete surfaced pavements.

Relying on this, MDOT has adopted a short list of distresses, which are tabulated in

reference (11).  Besides being useful for condition evaluation, they play a vital role in

rehabilitation selection.  The decision trees for maintenance selection, developed for the

MDOT, can be seen in the Appendix.  Selected distresses/distress groups for each

pavement type are entered in the decision tree to arrive at the appropriate rehabilitation

action.

The listed distresses in the decision tree for each pavement type are briefly

described:

1.4.1 Asphalt Concrete Surfaced Pavement Distresses

The asphalt concrete (ASP) surfaced pavement types include:

• original flexible pavements; i.e., asphalt pavements in their first performance

period

• overlaid flexible pavements
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• composite pavements; i.e., asphalt concrete overlays over Portland cement

concrete pavements

For ASP pavements, cracking and rutting are the primary distresses that detract from

serviceability.

Alligator Cracking. Alligator, fatigue, or map cracking is a series of

interconnecting cracks caused by fatigue of asphalt concrete surface under repeated traffic

loadings.  Cracking begins at the bottom of the asphaltic layer where tensile stress/strain is

highest under a wheel load.  The cracks propagate to the surface initially as a series of

parallel longitudinal cracks.  Under repeated traffic they develop into many-sided, sharp-

angled pieces into a pattern resembling chicken wire or the skin of an alligator.  It is

measured in square feet of surface area.

Other Cracks: These cracks include low severity alligator cracking, block

cracking, edge cracking, longitudinal cracking, and transverse cracking (10), measured in

square feet of surface area.

Rutting:  A rut is a longitudinal surface depression in the wheel paths.  Rutting

arises from permanent deformation in any of the pavement layers or subgrade, usually

caused by consolidation or lateral movement of the materials due to traffic load.  Thus,

densification (decrease in volume and, hence, increase in density), and shear deformation

lead to rutting.  It is usually measured by average depth in inches or millimeters.

1.4.2 Jointed Concrete Pavement Distresses

The distresses considered in jointed concrete pavements (JCP) are cracking and

spalling.

Cracking: Cracks in jointed concrete pavements include durability or “D” cracking,

longitudinal cracking, and transverse cracking.  These cracks are caused by many factors,
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such as loading, temperature, other environmental actions, and poor workmanship/quality

of materials.  The length of the cracks on a pavement are measured and recorded.  The

cracks are assumed to have influence on a pavement width of one foot.  Accordingly, the

area of pavement affected by cracks is obtained by multiplying length of cracks by one.

Spalling: Spalling is cracking, breaking, chipping, or fraying of slab edges or

cracked edges.  A spall usually angles downward to intersect a joint or a crack, and is

caused by excessive loading caused by traffic or by infiltration of incompressible

materials.  It is usually measured in length and converted into the area affected.

1.4.3 Continuously Reinforced Concrete Pavement Distresses

Punchouts and cracks are the major distresses considered in the decision trees for

Continuously Reinforced Concrete (CRC) pavements.

Punchout:  A punchout is an area enclosed by two closely spaced transverse cracks,

a short longitudinal crack, and the edge of the pavement or a longitudinal joint.  It also

includes “Y” cracks that exhibit spalling, breaking, and faulting.  This distress is caused by

heavy repeated loads, inadequate slab thickness, loss of foundation support, and/or a

localized concrete construction deficiency.  It is recorded as number of punchouts per

kilometer.

Cracks:  The cracks in CRC pavements include durability, longitudinal, and

transverse cracks.  These are caused by loading, shrinkage, temperature effects, and other

environmental factors.  These cracks are measured as the area of the pavement affected.

In addition to the above-mentioned distresses, two other attributes of pavement

deterioration requiring prediction models for all the three types of pavements include

roughness, expressed in International Roughness Index (IRI), and a condition index,

expressed in terms of Pavement Condition Rating (PCR).
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Roughness:  Roughness is deviations of the pavement surface from a true planar

surface with characteristic dimensions that affect vehicle dynamics, ride quality, dynamic

loads,and drainage.  The roughness is measured in terms of IRI, which is a mathematically

defined summary statistic of the longitudinal profile in the wheel path of a traveled road

surface.  It is defined by a mathematical simulation of a quarter car; i.e., one wheel with the

associated dynamic characteristics of the suspension and sprung mass of a typical

passenger car.  IRI is a scale of roughness, which is zero for a true planar surface,

increasing to about 6 for a moderately rough paved roads, and up to 12 for extremely rough

paved roads with potholing and patching.  The unit of measurement is m/km.

PCR:  Pavement Condition Rating is a composite condition index developed by

MDOT (12) as a function of distresses and roughness.  Condition of a pavement is

represented by PCR on a scale of 0 to 100, 100 representing pavement in excellent

condition and 0 representing an impassable pavement.

With various distresses affecting the present and future pavement conditions, it is

incumbent upon the pavement engineer to be able to forecast the magnitude/severity of

those distresses, which is the driving force behind this research.

1.5  FEEDBACK SYSTEM

Feedback refers to the transfer of part of the output to the input, as shown in the flow

chart of Figure 1.  A feedback system ensures continual feedback of information for

assessing pavement system conditions, and verification/substantiation of the design

standards and/or specifications.  System conditions can be predicted using prediction

models, and comparison with the feedback condition data provides a measure of predictive

capabilities.  It also provides procedures for evaluating other aspects of the highway
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network, including observed life cycle costs and performance of rehabilitation treatments

and of different pavement types.  Identification of deleterious aggregates/materials is

another area where feedback analysis can be extremely useful.  In summary, a feedback

system provides for measurement and evaluation of performance of the system in service.

In the context of a PMS, the on-going monitoring information is brought to bear on

the initial input, making such comparisons as follows (11).

• Comparisons of actual costs of maintenance, rehabilitation, and reconstruction

(available through contract bids and agency records) with those used in the PMS

analysis.

• Evaluations of field observations of pavement conditions with those predicted by

PMS models.

• Contrasts between actual performance standards achieved and those specified in

the PMS analysis.

This report covers the development of prediction models and compilation of a

feedback system.  Heavy reliance is placed on historical data for developing both of these

modules.  That is, the main input for both subsystems is the historical database, such as

condition history, pavement structure history, and deflection history, if available.

1.6  OBJECTIVES OF THE STUDY

The primary objective of this study is to develop models that predict pavement

performance.  Two categories of models will be developed.  The first category includes

distress prediction models for five families of pavement:  original flexible, flexible with
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overlay, composite, jointed concrete, and continuously reinforced concrete.  Performance

such as PCR prediction models for both asphalt surfaced and concrete pavements comprise

the second category.  Whenever feasible, regression models are augmented with expert

opinion employing Bayesian regression.  A second objective is to design/develop a stand-

alone feedback module to be used in the MDOT pavement management system.  Three sub-

modules comprising the main module, are the following:

• Load index ratio of flexible, jointed concrete and CRC pavements

• Load index ratio of overlaid flexible pavements

• Verification of distresses by comparing the actual to the predicted

1.7  SCOPE OF THE STUDY

The MDOT-PMS has adopted a decision tree approach, based on

distresses/distress groups, for the selection of maintenance actions.  Models are sought for

these distresses/distress groups and for MDOT’s performance index (PCR) for both

asphalt surfaced and concrete pavements.  Three categories of asphalt-surfaced pavements

are recognized for this purpose:

• original flexible pavements, i.e., pavements in their initial performance cycle,

• overlaid flexible pavements

• composite pavements.

Concrete pavements are classified into two groups:

• jointed concrete

• continuously reinforced concrete pavements.

As dictated by the rehabilitation selection decision trees, for each category of

asphalt-surfaced pavement, six models are sought:
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1. Area of alligator cracks of medium and high severity, percent

2. Area of ‘other cracks’ (combination of low severity alligator, block, edge,

longitudinal, transverse, and reflection cracks), percent

3. Percent of medium and high severity ‘other cracks’ expressed as a

percentage of total (low, medium, and high severity)

4. Eighty-fifth percentile rutting, mm

5. Roughness, IRI, m/km.

6. Pavement condition rating, on a scale of 0 to 100

For jointed concrete pavements, four distress models are to be developed:

1. Area of cracks (corner, D, longitudinal, and transverse cracks), percent

2. Area of spalling (longitudinal and transverse), percent

3. Roughness, IRI, m/km.

4. Pavement condition rating, on a scale of 0 to 100

The models required for continuously reinforced concrete pavements include:

1. Area of cracks (longitudinal and transverse), percent

2. Punchouts, #/km

3. Roughness, IRI, m/km.

4. Pavement condition rating, on a scale of 0 to 100

These models would become an integral part of the pavement management systems.

Current as well as future rehabilitation selection would be facilitated by the judicious use

of the models discussed here.  Model development entails the following specific tasks:

1. Extraction of the required data of different types in a suitable format

2. Selection of variables that affect the deterioration of pavements
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3. Establishment of suitable regression models for prediction of performance

as well as distresses.

4. Checking the predictive capability of the model.

5. Combining expert experience (for a few of the condition attributes) with

data- models to improve the prediction capability.

The special features of the study include:

1. Data from in-service pavements (as opposed to accelerated test data) are

used in model formulation.

2. SPSS software with stepwise regression capability is made use of in

developing models.

3. Prediction capability of six models is enhanced by combining expert

experience with condition data collected in the field.
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CHAPTER 2

REVIEW OF LITERATURE
2.1  INTRODUCTION

A regression technique is employed for modeling pavement deterioration.  Relevant

literature on this technique is included in Article 2.2.  The following two topics are

discussed with regard to regression models:  requirements of regression models, and

models developed in a few studies for various distresses.

2.2  REGRESSION MODELS

Pavement deterioration models or prediction models express the future state of a

pavement as a function of explanatory variables or causal factors.  A partial list of causal

factors includes:  pavement structure, age, traffic loads, and environmental variables.

Numerous models with those variables can be seen elsewhere (13,14,15,16).

Prediction models are classified into various categories depending on the predicted

variable, method of development, and whether individual or composite attributes are

predicted.  A commonly used classification recognizes two types:  deterministic and

probabilistic.  A deterministic model predicts a single value (16) of the dependent

variable; e.g., level of distress, condition of pavement, life of pavement, etc.  The

probabilistic models on the other hand predict a distribution of the attribute; for example,

mean and standard deviation.

Another classification groups the models into four categories:  (1) mechanistic

models, (2) empirical models, (3) mechanistic-empirical models, and (4) subjective

models.  Each of these models is briefly described below:

Mechanistic Models:  These are derived based on purely mechanistic

considerations.  Purely mechanistic models exist only for such primary responses as stress,
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strain, and deflection (17).  Attributes such as fatigue cracking, rutting, joint faulting, etc.,

are so complex that mechanistic models have rarely been attempted.

Empirical Models:  These models do not necessarily portray the theoretical

mechanisms of the pavement response and are developed from measured/observed data.

Empirical models are useful in situations where the theoretical mechanisms are not well

understood.

Mechanistic-Empirical Models:  These models are developed based on

mechanistic responses complemented by empirical distress relations.  The form of the

model and the variables included are generally based on theoretical knowledge, but the

coefficients are determined from regression analysis for which measured data is employed

(16).

Subjective models:  Here the experience is captured in a formalized or structured

way; e.g., Bayesian methodology, allows utilization of both the judgments of experienced

individuals and measured data to quantify mathematical models (18).

Depending on whether a single measure or a compound measure is predicted, other

classifications in use are the disaggregate and aggregate models.  Disaggregate models

predict the evolution of an individual measure of distress.  Aggregate models predict

composite measures; for example, damage index, condition rating, or serviceability.

Regression analysis is a statistical methodology concerned with relating a response

variable of interest, which is called the dependent or response variable, to a set of

independent or explanatory variables (19).  The objective is to build a regression model

that will enable us to adequately describe, predict, and control the dependent variable on

the basis of the independent variables.
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Use of regression methods for model development requires that certain conditions

be satisfied.  Some of the common conditions are described next.

2.2.1  Requirements for a Reliable Regression Model

The development of a reliable prediction model needs certain requirements to be

satisfied.  The requirements and general development of reliable pavement performance

models are described in detail by Darter (20).  The factors that must be considered

include:

• Adequate Database:  The database must be adequate and representative of the

overall pavement network that the model is being developed to represent.  The data

collected must be measured accurately and without bias.

• Reliable Data:  Care must be taken to assure the accuracy of the data obtained from

historical records.

• Sufficient Amount of Data:  The development of a reliable model requires the

collection of a sufficient amount of data.

• Inclusion of Variables:  Every possible variable that may affect the performance of

pavement should be considered initially.  This list will typically be large.

However, development of best possible regression model involves extensive

knowledge about the problem at hand, and of the regression analysis program.

• Functional Form of the Model:  The functional form of the model or the way in

which the variables are arranged has a great effect on the regression model’s

reliability.

• Statistical Criteria:  The final model should explain a high percentage of total

variation about regression (or R2).  The standard error of the estimate should be
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less than a practical value of usefulness.  All estimated coefficients of the predictor

variables should be statistically significant, and there should be no discernable

patterns in the residuals.

• Boundary Conditions:  The boundary conditions that the physical real-world

situation dictates shall be represented as closely as possible.  This necessitates a

model that considers the appropriate shape, non-linearity, and interactions of

variables (20).  Some of the boundary conditions (16) which should be satisfied

include:

o Initial Value:  The initial value of all damage is zero.  Similarly the

condition of a pavement at the beginning of its service life is excellent.

o Initial Slope:  Most damages have a slope that is initially zero.  However,

some damage types such as roughness or rutting have an initial upsurge.

o Overall Trend:  Most damage is irreversible and is non-decreasing, and the

serviceability index is non-increasing.

o Variations in Slope:  Damages can be affected by variables such as

changes in climatic conditions, which can lead to variations in slope.

o Final Slope:  Damage functions such as cracks, area of distress, and

serviceability have an upper limit.  In all these damage functions, the final

slope must be zero, and this type of equation approaches a horizontal

asymptote.  By contrast, other types of damages such as roughness or rutting

do not have such constraints.

o Final Value:  The maximum value of damage has an upper limit only for

those types of distresses for which the final slope is zero.
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To the extent practical, the aforementioned conditions would be adhered to in the

model development, guaranteeing predictions that are rational, physically realistic, and

accurate.  For some models, those conditions have not been fully satisfied (21), due

primarily to data limitations.

2.2.2  Review of Prediction Models

Aggregate models predicting some form of condition index for pavements are

widely used.  Such models help in determining the overall health of the network.

However, models for individual distresses such as cracks, rutting, and roughness are vital

in a PMS.  Models developed for important distresses similar to the ones used for

maintenance strategy selection by MDOT (see Appendix), are briefly reviewed here.  The

review will focus on the explanatory variables used, the form of the model, and the

attainable prediction capabilities.  These three tasks comprise the primary model building

effort.

In this article prediction models for asphalt surfaced pavements and rigid

pavements are reviewed under different headings, as are the composite condition index

models for all types of pavements.  First, the prediction models for asphalt-surfaced

pavements are considered.

2.2.2.1 Asphalt Surfaced Pavement Deterioration Models

The distresses considered in this study for asphalt-surfaced pavements are cracks,

rutting, and roughness.  A few selected models for the prediction of these attributes are

reviewed here.

2.2.2.1.1. Models for Prediction of Cracks.
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The prediction models for cracks in flexible pavements, in general, predict

initiation of cracking, progression of cracking, or score for percent area of cracking.

Brazil UNDP Model(22): A model developed from this study predicts the number of

equivalent single axles of 80 kN (18-kip) for the initiation of 1-mm-wide cracks.  Initiation

of cracking:

Log10Nc = 1.205 + 5.96 log10MSN (2.1)

R2 = 0.52

where, Nc = the number of ESALs to first crack; and

MSN = modified structural number.

The calculation of the modified structural number (MSN) requires explanation.  Structural

number is defined (23) as an index number derived from an analysis of traffic, roadbed soil

conditions, and a regional factor that may be converted to thickness of various flexible

pavement layers through the use of suitable layer coefficients related to the type of material

being used in each layer of the pavement structure.  It is expressed as:

SN = a1D1 + a2D2m2 + a3D3m3 (2.2)

where, ai   = ith layer coefficient;

mi = ith drainage coefficient; and

Di = depth of the ith layer.

The contribution of subgrade to pavement load carrying capacity is considered (6) by

defining a pseudo structural number for the subgrade.

SNsg = 3.51*log10CBR – 0.85(l0g10CBR)2 – 1.43 (2.3)

where, CBR = California Bearing Ratio, %.

Now, modified structural number is determined by:
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MSN = SN + Snsg

The progression of cracking is expressed in percentage area:

CR = -18.53 + 0.0458*B*LN + 0.000501*B*AGE*LN (2.4)

R2 = 0.64

where, CR     = amount of cracking, in percentage area;

AGE  = age of the pavement, years;

B       = mean surface deflection by Benkelman beam, mm; and

LN    = logarithm to base 10 of the number of cumulative equivalent

axles.

The Brazil study was extended and data from other studies were combined to develop the

World Bank Model described below.

HDM III Model (World Bank): Developed from a comprehensive, factorially designed

database of in-service pavements, the HDM III (6) includes models for cracking, rutting,

roughness, etc.  The cracking models are developed for various types of surfaces of

flexible pavements.  Models are described here for original asphalt concrete and asphalt

overlays for estimating the expected time or traffic for initiation of cracking:

Asphalt concrete original pavements:

TyCR2 = 4.21 exp(0.139 MSN – 17.1 YE4/MSN2) (2.5)

TECR2 = 0.0342 EHM-2.86 e -0.198 EY (2.6)

where, TyCR2 = expected (mean) age of surfacing at initiation of

narrow cracking, years;

TECR2 = expected (mean) cumulative traffic at initiation of narrow

cracking, million ESALs;
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MSN  = modified structural number;

YE4    = annual traffic loading, million ESALs/lane/year;

EHM  = maximum tensile strain in surfacing, 10-3; and

EY     = 1/(EHM4 1000 YE4), provided that EY<=6.

RTIM2 MODEL (6):  The model developed from the Transportation and Road Research

Laboratory (TRRL) road costs study in Kenya combines cracking initiation and

progression in one relationship expressed in terms of cracking plus patching, as follows:

For MSN<4.0, C+P>=0:

(C+P) = 21600 NES MSN-MSN (2.7)

where, (C+P) = sum of areas of cracking and patching (m2/km/lane);

MSN = modified structural number; and

NEs = cumulative traffic loadings since latest resurfacing (million

ESALs);

This model in the incremental form is expressed for cracking progression as

?(C+P) = 21600 MSN-MSN ? NEs (2.8)

The occurrence of crack initiation is expressed as:

NCA = max{[4/MSN – 1][MSN(1+MSN)]/72;0} (2.9)

where NCA = cumulative ESALs applied during the period before crack

initiation (million ESALs)

Texas Flexible Pavement Design System Model: The basic model utilized, a sigmoid

curve, is a modification of the AASHO (American Association of State Highway Officials)

Road Test damage function.  The sigmoid, or S-shaped, curve is expected to capture the
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long-term behavior of pavements (24).  The assumed form of the model for alligator

cracking is:

a = exp (-?/N)ß (2.10)

where, a     = decimal score for percent area of alligator cracking;

?    = [-0.97 + 0.039(T) + 0.0034(TI) + 0.018(d) – 0.0046(LL)

      + 0.0056(PI) + 0.0066(FTC)]*106;

ß     = 0.14 (LL)1.29 (PI)-1.01 (FTC)0.21 (DMD)-0.39;

T     = mean average monthly temperature - 500F;

TI    = Thornthwaite index + 50;

d      = thickness of base course layer;

LL   = subgrade liquid limit in percent;

PI    = plasticity index of the subgrade soil, in percent;

FTC = number of annual freeze-thaw cycles;

DMD = maximum dynaflect deflection; and

N      = the number of 18-kip equivalent single axle loads.

Similar models are developed for longitudinal and transverse cracking.

Rauhut, et al.(25,26) previously described the sigmoid form and proposed a

relation to transform damage index (DI, a damage function) to percentage of  area cracking

(AC) as follows:

AC = 0.19 ?3.96 DI (2.11)

In summary, the important explanatory variables for cracking employed in these

studies are cumulative ESAL, age, and structural number.  Other variables used for
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prediction of cracking include surface deflection, subgrade characteristics, and

environmental characteristics.

2.2.2.1.2 Models for Prediction of Rutting:  Rutting, caused by repeated application of

traffic loading, may result from the permanent deformation of all the pavement layers.

Traffic loading causes deformation when the stresses induced in the pavement materials

are sufficient to cause shear displacements within the materials.  Thus single loads or a

few excessive loads or tire pressures, causing stresses that exceed the shear strengths of

the materials, can cause plastic flow, resulting in depressions under the load.  Repeated

loadings at lesser load and tire pressure levels cause smaller deformations which

accumulate over time and manifest as a rut if the loadings are channelized into wheel-paths.

In modern pavement construction, rutting due to densification and deformation in the lower

layers under traffic loading is usually minor because it is taken into account in the

structural design methods, but can become significant when the pavement is weakened by

water ingress (6).  Indeed, rutting develops by plastic flow in bituminous surface layers  if

the bituminous materials are soft under high temperatures.  Various models for prediction

of rutting are developed based on mechanistic responses, strength of pavement, age,

cumulative traffic, etc.  A model based (27) on permanent strain is:

log εP = a + b logN  or εP = ANb (2.12)

where, εP       = permanent strain;

N       = number of load repetitions;

a & b = experimentally determined factors; and

A       = antilog of “a”.
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HDM Model(6): Mean rut depth:

RDM = t0.166 MSN-0.502 COMP-2.30 NE4
ERM (2.13)

R2 = 0.42, SEE = 1.71 mm, N = 2546

where, ERM = 0.0902 + 0.0384 DEF – 0.009 RH + 0.00158 MMP Acrx (2.14)

RDM = mean rut depth in both wheel paths, mm;

t = age of pavement since rehabilitation or construction, year;

MSN = modified structural number;

COMP = compaction index of flexible pavements, fraction;

NE4(t) = cumulative traffic loading at time t, million ESAL;

DEF = mean peak Benkelman beam deflection under 80 kN standard axle

load of both wheel paths, mm;

RH = rehabilitation state (=1 if pavement overlay, =0 otherwise);

MMP = mean monthly precipitation, mm per month; and

Acrx = area of indexed cracking, percent of total surfacing area.

Texas Transportation Model(24):  The model form is identical to that for alligator cracking

(see Equation 2.10)

s = exp(-?/N)ß (2.15)

where, s = decimal severity score for rutting;

? = [3.24 – 4.89(DMD) + 0.083(T) – 0.030(TI)]*106;

ß = 0.39 (PI)-0.63 (DMD)0.54 (T)1.02; and

N = the number of 18-kip (80 KN) ESALs.
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Rutting, as can be seen from the above models, is predominantly affected by traffic,

structural number, deflection, and subgrade characteristics.

2.2.2.1.3 Models for Prediction of Roughness:  Roughness has an important bearing on the

performance of a pavement.  Most of the roughness prediction models developed are for

flexible pavements, with some of  them for unpaved roads.  The models for paved roads

are briefly reviewed.

The AASHO Road Test (28) quantified the effects of pavement strength and traffic

loading on road roughness.  Roughness models from the Transportation and Road Research

Laboratory (TRRL) study also show strong effects of pavement strength and traffic loading

(29).

TRRL Model:

Rt = R0 + s(S) Nt (2.16)

where, s(S) = function of modified structural number;

R0, Rt = roughness at time t=0, and at t, respectively; and

Nt = cumulative number of equivalent 80 kN standard axle loads to time t.

Arizona Model(30):

Ri = C0 + C1 + C2T2 (2.17)

where, Ri = roughness for homogeneous section (in/mile)

T = years since the treatment, and

C0, C1 and C2 = regression coefficients.

The study indicated that C2 coefficient was not significant, and hence roughness

showed a linear relationship with time.
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Brazil-Study Model:  Empirical relationships were developed from an extensive database

from the Brazil-UNDP (22) study for predicting roughness in terms of Quarter Car Index

(QI):

QI = 12.63 – 5.16RH + 3.31ST + 0.393AGE + 8.66(LN/MSN) +

7.17*10-5(B*LN)2 (2.18)

R2 = 0.52, SEE=10.22 counts/km.

where, RH = state of rehabilitation, dummy variable:

=0 as constructed,

=1 overlaid;

ST = surface type dummy variable:

=0 asphaltic concrete

=1 surface treatment;

AGE = number of years since construction or overlay;

LN = log10 of cumulative equivalent axles;

MSN = modified structural number; and

B = Benkelman beam deflection, (0.01 mm).

Alberta Riding Comfort Index:  A recursive model was developed (31) to predict riding

comfort index, a roughness measure determined by the Portland Cement Association

roadmeter.  Among the many variables considered, such as traffic, climatic zone, subgrade

soil type, and others, only pavement age, ? AGE, and RCIB (previous riding comfort index)

were found to be statistically significant.  The equation is:



27

RCI  =  -5.998 + 6.870*LOG?(RCIB) – 0.162*LOG?(AGE2 + 1)

+ 0.185*AGE – 0.084*AGE*LOG?(RCIB)

- 0.093*? AGE (2.19)

R2 = 0.84, SEE = 0.38

where, RCI = Riding Comfort Index (state of 0 to 10) at any AGE;

RCIB = previous RCI;

AGE = age in years; and

? AGE = 4 years.

Summarizing, the literature indicates that the most important variables employed in

estimating roughness are age, and traffic (cumulative ESALs).

2.2.2.2 Rigid Pavement Deterioration Models

The literature reveals that studies to develop rigid pavement deterioration models

are not as extensive as for flexible pavements.  The COPES (14) study was the first

comprehensive study in this area.  Separate models were developed for jointed plain

concrete and jointed reinforced concrete pavements.  The distresses predicted include:

pumping, joint faulting, joint deterioration, slab cracking, and Present Serviceability Rating

(PSR).  ‘National’ models (14) were developed using COPES database, compiled from six

states and other studies.  The model to predict the slab cracking of jointed plain concrete

pavements follows:

CRACKS = ESAL 2.755 [3092.4(1-SOILCRS)RATIO10]

+ ESAL0.5 (1.233 TRANGE2.0 RATIO2.868)

+ ESAL2.416 (0.2296FI1.53 RATIO7.31) (2.20)
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R2 = 0.69,   SEE = 176 ft/mile,   N = 303

where, CRACKS = total length of cracking of all severities, ft/lane mile;

ESAL = accumulated 18-kip equivalent single-axle loads, millions;

SOILCRS = 0, if subgrade is fine-grained; 1, if subgrade is coarse grained;

RATIO   = Westergaard’s edge stress/modulus of rupture (stress computed

under a 9- kip wheel load);

FI  = freezing index; and

TRANGE = difference between average maximum temperature in July and

average minimum temperature in January.

A different model for jointed reinforced concrete was developed:

CRACKS = ESAL0.897 [7130.0 JTSPACE / (ASTEEL*THICK5.0)]

+ESAL0.10 (2.281 PUMP5.0)+ESAL2.16 [1.81/(BASETYP+1)]

+AGE1.3 [0.0036(FI+1)0.36] (2.21)

R2 =0.41, SEE = 280 ft/mile,    n = 314

where CRACKS = total length of medium- and high-severity deteriorated

temperature and shrinkage cracks, ft/mile;

ESAL = accumulated 18-kip equivalent single-axle loads, millions;

JTSPACE = transverse joint spacing, ft;

ASTEEL = area of reinforcing steel, in2/ft width;

THICK = slab thickness, in;

PUMP = 0, if no pumping exists; 1, low severity; 2, medium severity; 3 high

severity;

BASETYP = 0, if granular base; 1, if stabilized base (cement,
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asphalt, etc.);

AGE = time since construction, years (indicator of cycles of cold and warm

temperatures stressing reinforcing steel); and

FI = freezing index.

Texas Models for Distresses in CRCP:  The Texas models (32) make use of age as the only

explanatory variable to predict distresses in continuously reinforced concrete pavements.

Developed using a database containing 20 years of historical condition survey data, the

models predict punchouts (minor and severe), patches (asphalt and Portland cement

concrete), crack spacing, loss of ride quality, and spalling.  A generalized sigmoidal

function, specified by Texas Department of Transportation, is adopted for predicting the

distresses:

D = a exp(-(?es?)ß/N) (2.22)

where, D = predicted level of distress;

N = age of the pavement;

a, ß and ? = shape parameters estimated by regression;

? = a factor to adjust for traffic;

e = a factor to adjust for environment; and

s  = a factor to adjust for pavement structure.

For the purpose of analysis ?, e, and s were fixed at 1.0, due to a lack of required data.

The resulting model form is the same as Equation 2.10.

Different models are used to predict minor punchouts and severe punchouts.  a, ß

and ? for prediction of minor punchouts are 82.9, 1.33, and 18.6, respectively.  For
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prediction of severe punchouts the corresponding values are 35, 0.57, and 144,

respectively.

Crack spacing is the dependent variable in the crack prediction model.  Separate

equations are developed for CRC pavements with siliceous river gravel aggregate, and

limestone aggregate.  The values of parameters a, ß and ? for CRCP with siliceous gravel

are, respectively 34.9, 1.00, and 0.06; while those for CRCP with limestone are 19.79,

1.06, and 0.05.

The loss of smoothness is molded in this study as Normalized Serviceability Loss

(NSL):

NSL = (4.5-PSI) / 4.5 (2.23)

Where PSI is the Present Serviceability Index.  NSL ranges from 0 (PSI>=4.5) to 1

(PSI=0).  For example, if the PSI of a section is 3.5, then the section is assumed to have

lost 1 Serviceability Index (SI) unit of ride quality, giving an NSL of 0.22.  This means that

the section has lost 22 percent of its initial smoothness.

2.2.2.3  Models for prediction of Composite Condition Index

A composite condition index indicates the overall condition of a pavement.  In

general, it is a function of surface distress or roughness or both, and measures indices of

damage, condition or serviceability.  Different indices are used by various agencies to

indicate the condition of pavement.  Starting from the AASHO Road Test (28) when the

concept of serviceability was proposed, many models have been developed to predict the

condition index of a pavement.  The Present Serviceability Index (PSI) developed from the

AASHO Road test is a function of slope variance (a measure of roughness), average rut

depth, and area of cracking and patching.
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AASHO PSI Model:  In conjunction with the AASHO Road Test, a road user definition of

pavement failure was introduced.  For flexible pavements, the model for serviceability in

terms of PSI follows:

PSI = 5.03 – 1.91 log(1+SV) – 1.38 (RD)2 – 0.01 (C+P)0.5   (2.24)

where, SV   = slope variance;

RD  = average rut depth; and

C+P = area of cracking plus patching per 1000 ft2.

PENNDOT Performance Prediction Model:  PENNDOT model (29) is developed to

estimate PSI of reinforced concrete pavements, solely as a function of pavement age.  The

equation presented in a linear form is,

PSI = 4.24 – 0.0420(AGE) (2.25)

where, PSI =  the mean PSI predicted for concrete pavements with joint spacing of

61.5 ft; and

AGE = the age of the pavements in years.

State of Washington Model: The Pavement Condition Rating (PCR), a measure of

pavement surface distress (ranges from 100-no distress, to 0-extensive distress), is

predicted (29) as a function of two variables—age, and ESAL or thickness of overlay

(THICK).  The equations for asphalt concrete (new or reconstruction) and asphalt concrete

overlay are, respectively:

PCR = 100 - 3.08 (AGE) - 1.4*10-6 (ESAL) (2.26)

PCR = 95.1 - 4.51 (AGE) +2.69(THICK) (2.27)

Mississippi PCR Models: Pavement Condition Rating (PCR), a performance indicator

developed for MDOT (33) is a function of distresses and roughness.  PCR, on a scale of 0-
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100, is a function of age, traffic, and structural number or thickness of overlay.  The

equations for flexible pavements with no overlay, those with overlay, and composite

pavements are, respectively:

PCR = 90 - a[exp(AGEb)-1] log[ESAL/MSNc] (2.28)

PCR = 90 - a[exp(AGEb-1] log[ESAL/MSNc] (2.29)

PCR = 90 - a[exp(AGE/T)b-1] log(ESAL] (2.30)

where, AGE = time in years since last construction;

ESAL = yearly 18-kip single axle load;

T = thickness of asphalt concrete surface for composite

pavements;

MSN = modified structural number; and

a,b,c = regression constants.

Uzan and Lytton Model:  A model for PSI (34), similar to the one developed from the

AASHO Road test follows:

PSI = 4.436 - 1.686 log10(1+350 Var(RD)) - 0.881 RD2.5

- 0.031(C+P)0.5

(2.31)

R2 = 0.80

where, RD = average rut depth; and

C+P = area of cracking plus patching per 1000 ft2.

Here the intercept coefficient (4.436) is very close to the average value of the pavement

serviceability after construction (34).
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HPMS Models:  Models to predict Present Serviceability Rating (PSR) are developed

using data from HPMS (Highway Performance Monitoring System) databases and other

databases.  The model (35) has existing pavement structure (e.g. SN), age, and cumulative

ESAL, as predictor variables.  Five types of pavements are recognized:

Flexible Pavement Models:

log10(4.5-PSR) = 1.1550 - 1.8720*log10SN + 0.3499*log10AGE

   + 0.3385*log10CESAL (2.32)

R2 = 0.52, SEE = 0.45, N = 522

Composite Pavement Model:

log10(4.5-PSR) = -0.4185 - 0.1458*log10OLTHK + 0.5732*log10AGE

   + 0.1431*log10CESAL (2.33)

R2 = 0.58, SEE = 0.38, N = 509

Jointed Plain Concrete Pavement Model:

Log10(4.5-PSR) = 0.5104 – 1.770*log10THICK + 1.0713*log10AGE

     +0.2493*log10CESAL (2.34)

R2 = 0.79, SEE = 0.26, N = 117

Jointed Reinforced Concrete Pavement Model:

Log10(4.5-PSR) = 1.7241 - 2.7359*log10THICK + 0.3800*log10AGE

   + 0.6212*log10CESAL (2.35)

R2 = 0.57, SEE = 0.40, N = 254

Continuously Reinforced Concrete Pavement Model:

Log10(4.5-PSR) = 0.7900 – 1.312*log10THICK + 0.1849*log10AGE

    + 0.2634*log10CESAL (2.36)
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R2 = 0.37, SEE = 0.31, N = 1204

where, PSRi = initial value of PSR at construction (4.5 used in the analysis);

STR = existing pavement structure as follows:

1.   THICK, slab thickness for concrete pavements, inches

2. SN, structural number for flexible pavements,

3. OLTHK, total asphalt concrete overlay thickness for composite

pavements, inches.

AGE = age of pavement since construction or since major rehabilitation

(overlay), years; and

CESAL = cumulative 18-kip ESAL applied to the pavement (in the heavily

trafficked lane), millions.

Damage Index Model:  The Texas Transportation Department employs a sigmoidal (S-

shaped) curve, a shape that appears to reproduce long term pavement  performance data

(24), in modeling.  Note this equation form is analogous to Equation 10.

g = exp-(?/N)ß (2.37)

where, g = damage = (Pi - P)/(Pi - Pf);

? = a constant which equals the number of 18-kip equivalent single axle

loads when g=1;

ß = a power which dictates the curvature of the damage function;

Pi = initial serviceability index;

P = present serviceability index; and

Pf = asymptote serviceability index.
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South Carolina and Tennessee Models:  Both agencies use identical form, with different

model coefficients (36):

PSI = PSI0 – exp(a-b*ct) (2.38)

where, PSI  = predicted PSI;

PSI0 = PSI at age = 0 (t=0);

t = loge(1/AGE); and

a,b,c = model coefficients.

COPES Model:  COPES (14) model makes use of age, traffic, distress, and environmental

factors to predict the Present Serviceability Rating (PSR).  The models for jointed concrete

pavements follows:

Jointed Plain Concrete Pavement:

PSR = 4.5 - 1.486*ESAL0.1467 + 0.4963*ESAL0.265*RATIO-0.5

-0.01082*ESAL0.644*(SUMPREC0.91/AVGMT1.07)

*AGE0.525 (2.39)

R2 = 0.69, SEE = 0.25, N = 316

Jointed Reinforced Concrete Pavement:

PSR = 4.5 - ESAL0.424 - (1.88*10-3 + 14.417 RATIO3.58 + 0.0399 PUMP

+ 0.0021528 JTSPACE + 0.1146 DCRACK

+ 0.05903 REACTAG + 4.156E-5 FI + 0.00163 SUMPREC

-0.070535 BASETYP) (2.40)

where, PSR = present serviceability rating;

ESAL = accumulated 18-kip equivalent single-axle loads, millions;

RATIO = Westergaard’s edge stress/modulus of rupture;
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SUMPREC = average annual precipitation, cm;

AVGMT = average monthly temperature, degrees C;

AGE =  time since construction, years;

PUMP = 0, is none or low pumping; 1, if medium or high pumping;

JTSPACE = transverse joint spacing, ft;

DCRACK = 0, if no “D” cracking exists, 1, if “D” cracking exists;

REACTAG = 0, if no reactive aggregate exists; 1, if reactive aggregate

exists;

FI = freezing index; and

BASETYP = 0, if granular base; 1, if stabilized base (asphalt, cement,

          etc.).

CRS Models for Illinois Interstate Highway System:  The pavement condition indicator

used for the Illinois Interstate Highway system (37) is designated as Condition Survey

Rating System (CRS).  Pavements are rated on a 1 to 9 scale on the basis of distresses

observed.  The best rating of 9 is assigned to a newly constructed or resurfaced pavement.

Prediction models are developed for JRCP, CRCP, and asphalt concrete overlay of JRCP

(JROL) and CRCP (CROL).  The following functional form of the model is assumed:

CRS = 9 - 2*a*THICKb.AGEc.CESALd (2.41)

The equation is expressed in the linear form by logarithmic translation and solved.  The

variables are:

CRS = panel condition survey rating (1 to 9);

THICK = slab thickness for JRCP or CRCP and overlay thickness for AC

overlay;
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AGE = years since construction or overlay;

CESAL = accumulated million ESALs in outer lane since construction or

overlay;

 a,b,c,d = constants for each pavement type.

The review indicates that composite condition index models assume varying

complexity:  a simple model involving only age to that involving many such factors as

roughness, traffic, structure of pavement, to name the important ones.  Age is a common

explanatory variable in most of the models.  The other important variables include

structural number/thickness of overlay or slab and traffic.  A few models make use of

distresses for prediction of composite index.

2.2.2.4 Other Model Types

Recursive Model: Another type of model to predict distress or condition index

is the incremental, or in its purest sense, derivative model(6).  It not only permits the

prediction of future deterioration as a function of time, imposed traffic, structural, and

environmental conditions, but also employs the current condition of pavement.  This

property is advantageous, since the distress/condition of the pavement can be utilized as

data become available from condition surveys.  The form of the model can be expressed

as:

?  ( future deterioration over incremental time) = f (current condition, traffic,

strength, environment, maintenance)   (2.42)

The generally slow rate of deterioration of pavements, however, means that the

changes of condition observed in empirical deterioration studies are usually small, and
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very sensitive to measurement error.  Such models also require extensive time-series data.

Therefore, incremental models are not attempted here.

All the models described above are deterministic models.  However, probabilistic

models are also attempted in a few studies.  Markov models and survivor curves are

examples of probabilistic models.  The principles involved in the development of these

models are briefly discussed.

Markov Model:  A Markov model employs a transition matrix that expresses the

probability that a group of pavements of similar age or level of traffic will move from one

state of distress or serviceability to another within a specified time period.  The Markov

process describes a probable “before” and “after” condition of the pavement.  The before

condition is described by probabilities that the pavement will be found in each of the

assumed finite number of states.  The after condition is described in a similar manner.

With appropriate data, Markov transition matrices can be constructed for any mode of

pavement deterioration, for example, cracks, punchouts, and serviceability.

Survivor Curves:  A survivor curve is a function indicating the probability of

survival of pavements with time or traffic.  The probability drops off from a value of 1.0

down to zero, and expresses the percentage of pavements that remain in service after a

number of years or passes of traffic load without requiring major maintenance or

rehabilitation.  The slope of the survivor curve is the probability density of survival.

Survivor curves are developed from historical data of pavements and are useful in

planning maintenance and rehabilitation alternatives on pavement networks.

Probabilistic models are not attempted in this study and, therefore, will not be

discussed further.  Another relatively novel approach for formulating prediction
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algorithms, namely Bayesian regression modeling, is briefly discussed in the ensuing

section.

2.2.3  Bayesian Regression

An emerging technique for performance modeling is to incorporate expert opinion

in the observed data.  Use of expert opinion falls generally into two categories:  First,

when performance data is lacking expert opinion is sought and used as a surrogate for

observations.  Second, expert opinion is employed in Bayesian regression, which

explicitly allows expert judgment collected from in-house or external experts to

complement the “poor quality” data for model building.  Bayesian statistics were

developed specifically to cope with small and noisy sample data by providing a structured

way to introduce prior information into the regression analysis.  Given certain constrained

assumptions, Bayesian regression develops a statistically optimal posterior multivariate

regression model based on a defined prior and field models (38).

In summary, the survey of literature indicates that many different types of regression

models are developed for the prediction of pavement distresses.  They include

disaggregate models for prediction of cracks, rutting, punchouts, etc.  Aggregate models,

encompassing pavement condition index/rating, are reviewed as well.  Finally, Bayesian

regression analysis, which includes a detailed analysis of the prior, a classical regression

of the data, is included in this chapter.  Prior to attempting the models, a brief discussion of

the database employed is presented.
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CHAPTER 3

PMS DATABASE AND DATA FOR MODELING

3.1  INTRODUCTION

A comprehensive database is a major component/module of a pavement

management system, which serves as the basis of analyses for maintenance work programs

including prediction models.  The MDOT PMS database comprises the information on the

network, with data on more than 12,000 two-lane miles.

For the purpose of collecting data, the road network is partitioned into

‘homogeneous sections’.  A homogeneous section can be defined (14) as a section of

pavement that has along its length uniform characteristics, for example, structural design,

joint and reinforcement design, number of lanes, subgrade condition, construction (by the

same contract), age since opening for service, pavement materials, proportion of truck

traffic, and maintenance applied.  An identification code (SECIDNUM-section

identification number) is adopted to describe each homogeneous section.  It is a unique

combination of the following attributes:  route number, county number, direction of survey

(N, S, E, or W), and beginning accumulated log mile.  For each homogeneous section the

following classes of data are available in MDOT-PMS:

• inventory

• geometry

• construction

• history including maintenance

• traffic

• condition
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The database is the central feature of a pavement management system as seen in Figure 1.1,

and forms a foundation for a successful PMS.

These diverse items of information are needed for fully describing a pavement

section, conducting various analyses related to PMS, and establishing links between

different modules of the PMS.  Easy accessibility is also paramount, for which it is

necessary to utilize a versatile database.  FOXPRO software is adopted by MDOT-PMS.

3.2  DESCRIPTION OF DATABASE

For ease of access, handling, and storage, the basic pavement data is stored in five

main databases.  The database names and brief descriptions follow:

TESTDATA.DBF:  Describing the inventory data, which are the physical features

of the pavement sections, this database includes the route number, name of the county in

which it is located, direction of travel, beginning accumulated log mile, ending

accumulated log mile, length of the section, type of pavement surface, classification of road

according to HPMS functional class, number of lanes, and width of lanes.

TESTORGM.DBF:  The details of pavement construction are stored in this

database.  Included in the database are depth of each layer, type of material used in each

layer, subgrade type, and year of construction, among others.

OVERLAY.DBF:  Historic data of maintenance data is stored here, which includes

the year of maintenance, various details of type of maintenance, and overlay, if any.  This

chronological data is necessary to take into account the effect of maintenance actions,

improvement in conditions due to overlay, etc.

TRAFFIC.DBF:  Traffic database contains the details of traffic for each section,

such as average daily traffic (ADT), percentage of trucks in the traffic mix, and traffic
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growth rate.

RATING.DBF:  Included in this database are electronic data such as rutting, IRI

and faulting, and the PCR values calculated from the condition data.  Also included are the

percentage lengths of each section with low, medium, and high severity levels of rutting as

well as 85th percentile rutting.

Environmental conditions are considered to be uniform throughout Mississippi.

Consequently, environmental data is not collected.

Apart from the data stored in the above-mentioned basic databases, condition data

which is voluminous in nature is stored in many other database files.  Storing them in

different database files yields many advantages such as ease of identification, management,

analysis, and storage.  Physical distresses form the main condition data.  The other

condition data collected are roughness and rutting (in the case of asphalt surfaced

pavements).  A brief description of physical distresses, roughness, and rutting are included.

Physical Distresses:  Physical distresses, collected as a part of condition data,

appear in pavements over a period of time, due to different mechanisms.  The SHRP-LTPP

Distress Identification Manual (10) describes the distresses which occur in each pavement

type.  It recognizes 15 distress types for asphalt surfaced pavements, 16 for jointed

concrete pavements, and 15 for continuously reinforced concrete pavements.  These

distresses are listed in Table 3.1.

For the purpose of data collection, each highway is partitioned into homogeneous

sections.  A ‘video inspection vehicle’ is used in collecting distress data.  Instruments for

measuring roughness and rutting are mounted on the same vehicle along with five high

resolution electronic color cameras for the distress survey.  Video-photographs of the
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pavement surface are taken with the vehicle moving at normal highway speeds.  These

video-photographs are projected onto a computer-screen in the office and distress type,

severity, and extent are manually recorded using SHRP-LTPP distress identification

manual (10).  To suit the conditions of Mississippi, MDOT has made minor changes in

describing the severity levels of some distresses as documented in reference (11).

Though the distress survey covers 100% of the homogeneous section, only two

samples of 500 feet per mile are examined in detail for distresses.  In the case of sections

that are less than ½ a mile in length, the entire section is evaluated.

Roughness:  The roughness data is collected using South Dakota type profilometer

(11).  It consists of a linear accelerometer and a non-contact laser device mounted on a

standard van and controlled by an on-board microcomputer measuring roughness at normal

highway speeds.  Profilometer measurements taken every 10 inches are compiled, and the

IRI in m/km for the entire length of each homogeneous section is provided as output.

Rutting:  Rutting, collected as a part of the condition data, is the longitudinal

depression in the wheel paths.  It is measured by a rut bar with three laser sensors.  The

software records the following severity levels as proposed for rutting by MDOT:

Low severity > 6.4mm (1/4 inch)<=  12.8mm (½ inch)

Moderate severity > 12.8 (½ inch)<= 25.4mm (1 inch)

High severity > 25.4mm (1 inch)

Employing the above-mentioned severity levels, the percentage of length of the section in

each category is recorded.

Table 3.1.  Distresses in Different Types of Pavements (Adapted from SHRP
LTPP(10))
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Asphalt Concrete
Surfaced Pavement

distress types

Jointed Concrete
Pavement distress

types

Continuously
Reinforced Concrete

Pavement
distress types

Alligator Cracking Corner Breaks Durability Cracking

Block Cracking Durability Cracking Longitudinal Cracking

Edge Cracking Longitudinal Cracking Transverse Cracking

Longitudinal Cracking Transverse Cracking Map Cracking and Scaling

Reflection Cracking Joint Seal Damage Polished Aggregate

Transverse Cracking Spalling of Longitudinal
Joints

Popouts

Patch/Patch Deterioration Spalling of Transverse
Joints

Blowups

Potholes Map Cracking and Scaling Water Bleeding and Pumping

Rutting Polished Aggregate Lane-to-Shoulder Dropoff

Shoving Popouts Lane-to-Shoulder Separation

Bleeding Blowups Patch/Patch Deterioration

Polished Aggregate Faulting Punchouts

Raveling Lane-to-Shoulder Dropoff

Lane-to-Shoulder Dropoff Lane-to-Shoulder Separation

Water Bleeding and Pumping Patch/Patch Deterioration

Water Bleeding and Pumping

Composite Condition Index:  Based on the physical distresses, rutting, faulting, and

roughness data, a composite condition index called Pavement Condition Rating is

calculated and stored in the database.  Pavement Condition Rating (PCR) (11) is a rater’s

assessment on a scale of 0 to 100, of the serviceability of a pavement with respect to

quality of ride, surface defects, pavement deformation, cracking distress and maintenance

patches.  PCR, as used by MDOT, is an objective statistic determined by combining ride
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quality and distress manifestations.  The ride quality or roughness rating is obtained from

road roughness measurements, while the distress rating employs severity, extent, and type

of distress.  Deduct values, much like weighting factors, are introduced to signify the

magnitude of the effect that each particular distress type, severity, and extent combination

has on pavement condition.  Continuous deduct point curves/equations are developed (12)

for each distress type.  Finally, the roughness rating and distress rating are combined to

yield PCR using the formula:

 PCR  = 100((12-IRI)/12))a ((DPmax – DP)/DPmax))b (3.1)

where, IRI = road roughness, m/km;

DPmax =  probable maximum deduct points with 205, 230, 185, and 145,

respectively for flexible, composite, jointed, and continuously

reinforced concrete pavements;

DP = total deduct points for a pavement section;

a = 0.9567 for flexible, jointed concrete, and continuously reinforced concrete

pavements; and 1.11 for composite pavements; and

b = 1.4857 for flexible, jointed concrete, and continuously reinforced concrete

pavements; and 1.5429 for composite pavements.

The distress attributes from a maintenance point of view, and the factors affecting

those attributes are identified from among the various available details of a pavement in the

database.  Selected from this voluminous database are the required dependent (response)

and independent (explanatory) variables required for performance modeling.  For

performance modeling, a pavement family approach is employed in this study.

3.3 PAVEMENT FAMILY APPROACH
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The behavior of different types of pavements or even individual pavements within a

given type is different.  This would entail developing a model for each pavement

unit, otherwise known as site-specific models.  Time series data over a long period would

be needed for site-specific models.  By necessity, therefore, a ‘pavement family’ approach

is adopted in this study, wherein pavements with similar surface characteristics and/or

deterioration are grouped together into ‘families’ or groups (13,39,41).  Grouping

pavements into families differs from agency to agency.  In consultation with the MDOT

personnel, the pavement sections in the statewide network are grouped into the following

families or groups:

• original flexible pavements

• overlaid flexible pavements

• composite pavements

• jointed concrete pavements

• continuously reinforced concrete pavements.

A brief description of each of these groups with special reference to the predominant

distresses is presented.

Original Flexible Pavements:  These are the flexible pavements that are in their

first performance period.  The development of distresses in these pavements, therefore, is

not influenced by the pre-existing cracks.

Overlaid Flexible Pavements:  Rehabilitated flexible pavements are those that are

overlaid at least once.  They form a different group owing to factors which affect the

development of distresses.  With one or more layers having undergone

deterioration/cracking, they become active in reflecting these distresses in the overlaid
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layer unless special provisions are made to arrest the development.  Also, if the overlay is

not adequately bonded to the original surface, the tendency to develop low temperature

cracks would be greater.  Another difference lies in the fact that the original pavement

structure may have undergone substantial rutting during its “lifetime,” therefore, the overlay

would be susceptible to further rutting.

Composite Pavements:  These pavements possess characteristics derived from both

flexible and rigid pavements, because they are rigid pavements with asphalt overlay.  The

structural capacity realized is due to load dispersion in the asphaltic overlay and slab

action of the concrete slab.  Some of the distresses are unique to this kind of pavement, for

example, joint reflection cracking.

Jointed Concrete Pavements:  These consist of concrete slabs typically 15 to 60

feet long.  Because of the joints, shrinkage related cracks are minimal.  But joint-related

distresses are to be reckoned with in these pavements.

Continuously Reinforced Concrete Pavements:  Continuously reinforced concrete

pavements consist of slabs typically hundreds of feet long.  They are provided with

reinforcement to hold tight the cracks that develop.  Thus, cracks are allowed to develop,

but are kept intact.  Punchout is a distress in this type of pavement.  Because of fewer joints

per unit length, the rate of increase in roughness is generally lower than that of jointed

concrete pavements.

Once the pavement families are identified and the sections grouped accordingly, the

data for homogeneous PMS sections are compiled.  A distinction was made between

response and explanatory variables when compiling the data.

3.4 RESPONSE VARIABLES
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The response variables identified in Chapter 1 are extracted from the PMS

database.  For this purpose and other PMS analyses requirements, the data from the

condition survey is summarized to yield distress type, severity, and extent.  The condition

data analysis yields two reports, The Sample Summary Report, and The Section Summary

Report.  The sample summary report summarizes the distress type, severity, and extent

found in each sample, generally 500 feet in length.  The data of several samples is

extrapolated to the whole section to produce the section summary report.  Mandated by the

MDOT PMS, models are required for individual distresses and distress groups as well.

Referred to as response variables, they are briefly described in the following section.

3.4.1 Response Variables in Asphalt Surfaced Pavements

Original flexible pavements, rehabilitated flexible pavements, and composite

pavements make up the asphalt-surfaced pavement group.  For asphalt-surfaced pavements,

alligator cracking of medium and high severity is combined to form a single attribute.  The

second distress group comprises alligator cracking of low severity and all other cracks of

all severities; i.e., block, edge, longitudinal, transverse, and reflection cracks, and is

referred to as ‘other cracks.’  Medium and high severity other cracks expressed as a

percentage of ‘other cracks’ of all severities constitute the third group.  The other three

attributes, i.e., roughness, PCR, and rutting complete the list of response variables.  The

calculation of the 85th percentile rutting needs some explanation.  Eighty-fifth percentile

rutting is a required input in the strategy selection tree, sketched in Appendix A.  Available

from the PMS database are the percent lengths of the section exhibiting low severity 6.4 to

12.8mm (0.25 to 0.5 inch), medium severity 12.8 to 25.4mm (0.5 to 1.0 inch), and high

severity >25.4mm (>1.0 inch) rutting.  The 85th percentile rutting is now obtained by
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interpolation.  To illustrate, consider a section exhibiting rut depths of low, medium, and

high severity over 30% and 10% of the length.  This is indicated schematically in Figure

3.1.  From the diagram it is seen that 85th percentile rutting is between 12.8 and 25.4mm

(0.5 and 1 inch).  By linear interpolation between 12.8 and 25.4mm (0.5 and 1.0 inch), 85th

percentile rutting is calculated to be 22.9mm (0.9 inch).  Since the field data does not

include the maximum rut depth in a section, for calculation purposes, a probable maximum

rut depth of 31.8mm (1.25) inch is used in the routine used to calculate 85th percentile

rutting.

3.4.2 Response Variables in Jointed Concrete Pavements

The distresses considered in maintenance strategy selection for jointed concrete

pavements are cracks and spalling.  The cracks (corner, durability, longitudinal, and

transverse) include all three severities with the extent expressed as the percentage affected

area of section (length of cracks multiplied by 1 foot).  The other distress of importance,

spalling of longitudinal and transverse joints, is also expressed as percentage area

affected.  Roughness, directly available in the database, is the third variable that enters the

maintenance decision tree.
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3.4.3 Response Variables in Continuously Reinforced Concrete Pavements

Punchout is considered the most severe form of all the distresses in continuously

reinforced concrete pavements, expressed as the number of punchouts per km for a given

section.  Longitudinal and transverse cracks constitute the other major distress class used

in the decision tree.  The roughness statistic is directly available in the database.

3.5 IDENTIFICATION OF EXPLANATORY VARIABLES

Every likely variable that may affect pavement performance should be considered

initially (20).  This list will typically be large.  For their implementation within a PMS,

however, predictive models must utilize only those variables that can be directly measured

within acceptable cost and time constraints (6), retrieved from historical records, or

computed or estimated.  A study (42) funded by SHRP-LTPP prepared a summary of

significant data elements in the SHRP National Information Management System.  The lists

for asphalt surfaced and Portland cement concrete surfaced pavements are presented in

Tables 3.2 and 3.3, respectively.

For identifying variables, one suggested method (20), is to categorize the variables

under major topics that are known to affect performance, such as layer material properties,

subgrade characterization, layer geometry, climate, traffic, maintenance, and drainage.  If

each of these general topics is adequately represented by one or more variables, then the

model should contain most of the important variables known to affect performance (20).
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A preliminary list of important explanatory variables is prepared under four major

categories which affect long-term pavement behavior.  Those categories include loading,

material properties, environment, and maintenance as listed in Table 3.4.  This list will be

the primary source for explanatory variables.

TABLE 3.2 - Significant Data Elements in the SHRP National Information
Management System for Pavements with Asphalt Concrete Surfaces (42)

Significant Data Elements
1 Surface Thickness 16 Subsurface Drainage

2 Base/Subbase Thickness 17 Geological Classification of Coarse
Aggregate in HMAC

3 Surface Stiffness 18 % of Subgrade Soil Passing #200 Sieve

4 Unbound Base/Subbase Stiffness 19 Plasticity Index of Subgrade Soil

5 Bound Base/Subbase Stiffness 20 Liquid Limit of Subgrade Soil

6 Subgrade Stiffness 21 % of Subgrade Soil Finer than 0.02 mm

7 Age of Pavement 22 Type of Environment

8 Cumulative ESALs 23 Average Max. Daily Temp. By Month

9 Asphalt Viscosity 24 Average Min. Daily Temp. By Month

10 Asphalt Content 25 Thronthwaite Index

11 Percent Air Voids 26 Freeze Index

12 HMAC Aggregate Gradation 27 No. of Days Min. Temp.<32F

13 Percent Compaction of Base/Subbase 28 No. of Days Max. Temp.>90F

14 Subgrade Soil Classification 29 Number of Air Freeze Thaw Cycles

15 In-situ Moisture Content of Subgrade 30 Annual Precipitation
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TABLE 3.3 -  Significant Data Elements in the SHRP National Information
Management System for Pavements with Portland Cement Concrete Surfaces (42)

Significant Data Elements
1 PCC Surface Thickness 15 AASHTO Soil Classification of Subgrade

2 Base Thickness 16 Subgrade % Passing #200 Sieve

3 PCC Surface Thickness 17 Moisture Content of Subgrade

4 Base Stiffness 18 Joint Efficiency

5 Subgrade Stiffness 19 Thornthwaite Index

6 Age of Pavement 20 Annual Precipitation

7 Cumulative ESALs 21 Precipitation Days by Year

8 Type of Coarse Aggregate for PCC 22 Shoulder Type

9 Gradation of Coarse Aggregate for PCC 23 Subsurface Drainage Type

10 PCC Compressive Strength 24 Average Max. Daily Temp. By Month

11 AASHTO Soil Class Base/Subbase 25 Average Min. Daily Temp. By Month

12 % Compaction of Base/Subbase 26 No. of Days Min. Temp. <32F

13 Coarse Aggregate Gradation of
Base/Subbase

27 No. of Days Max. Temp. >90F

14 Fine Aggregate Gradation of Base/Subbase 28  Air Freeze-Thaw Cycles

TABLE 3.4 - Factors Affecting Pavement Condition

Load Geometry
/Material Properties

Environment Maintenance

Average daily traffic

Percentage of trucks in
traffic mix

Axle load

Tire pressure

Type of material in
each layer

Thickness of each layer

Type of subgrade soil

Thickness of slab (layer)

Rainfall

Temperature

Freezing Index

Type of overlay

Thickness of overlay
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Loading is the primary factor for which the pavements are  designed.  Loads applied  on

pavements  vary  in nature depending on the wheel configuration, gross vehicle weight, tire

pressure, volume of traffic, number of lanes in the direction of travel, and others.  The

effect of mixed traffic loads is converted to a standard axle (18 kips) referred to as

equivalent single axle load--ESAL.  ESALs for any section per day can be calculated using

the following formula:

ESAL = ADT*DF*LF*TP*ESALF (3.2)

where, ADT  =  average  daily  traffic;

DF  =  a  directional  factor expressed as a ratio that accounts  for  the  distribution

of ESAL units by direction, e.g., east, west, north, south, etc.  It is 0.5 if

there is traffic in both directions, and 1 if there is traffic in one direction

only.

LF = a lane distribution factor, expressed as a ratio, that accounts for the

distribution of traffic when two or more lanes are available in one

direction.

As suggested in AASHTO Guide (23), the following values are used:  for

the  number  of  lanes  in  each  direction = 1, 2, 3, and 4, LF = 1, 0.9, 0.7,

and 0.625, respectively;

TP  = number of trucks in total traffic expressed as a ratio; and

ESALF =  Truck factor to convert axle loads to ESAL, 0.55-1.2.

To estimate the cumulative traffic, the initial traffic on a section is to be calculated.  From

the known daily ESAL on a section in the nth year, initial yearly ESAL is calculated as:

ESALo = (ESALn/(1+i) n) 365  (3.3)
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where, ESALn = ESAL in any year n;

ESALo = initial daily ESAL on the day traffic is opened on the road; and

i        = rate  of  traffic  increase  expressed  as a percent per year, found in

            the PMS database.

Thus, ESAL is determined for use in calculating cumulative ESAL (CESAL) (43) in any

year as:

n           ESALo365
CESAL =S ESAL = ____________    [(1+i)n-1] (3.4)

0 loge(1+i)

Material characteristics are the next important group of factors affecting the

behavior of pavements.  The structural capacity of the pavement determines largely how

safely a load can be carried by a pavement, and how long it can last in a serviceable

condition.  The structural properties of different types of pavements are taken into account

by the following variables:

Flexible – modified structural number, MSN

Composite – thickness of last overlay in inches, TOPTHK

Concrete (both jointed and CRC) – slab thickness in inches, SLABTHK

In addition to the above variables, other structural attributes are considered.  These

include:

SURTK - thickness of surface course, mm;

BASTK - thickness of base course, mm;

SUBTK - thickness of subbase course, mm;

STABBAS - A categorical variable for the type of base/subbase course underneath

the PCC slab.  The values of variable assigned are as follows:
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10 - if the base course is stabilized; and

  1 - if the base course is not stabilized.

CEM - A categorical variable to represent whether the base course or subbase

course underneath the AC surface is cement stabilized.  This distinction is

necessary because cement stabilized layers develop shrinkage cracks which

eventually reflect to the surface layer.  The categorical variable takes on a

value of 10 if there is a cement stabilized layer, and 1 otherwise.

For the purpose of analysis, the environmental conditions are considered to be

uniform throughout Mississippi, and therefore, the variables listed under environmental

factors in Table 3.4 do not warrant further discussion.  However, coastal regions are

expected to have unique conditions, for example, type of subgrade (mostly sandy) soil,

shallow water table, and relatively large precipitation, which are different from those

prevalent in non-coastal areas.  A pavement in a coastal region is represented by a

categorical variable (COAST) of 10.  For the purpose of this study the following counties

belong to the coastal region:  Hancock, Harrison, Jackson, Stone, Pearl River, and George.

Another variable which takes into account the amount of exposure of a pavement to

environmental effects (e.g., number of cyclic hot and cold temperatures) is the AGE of the

pavement, represented by number of years since construction or last overlay.

The last group of variables considered in Table 3.4 is maintenance.  Major

maintenance actions such as overlay are taken into account either by the modified structural

number or by thickness of overlay.  But, if resurfacing is applied, the type of resurfacing

plays an important role in the future distress manifestations.  Therefore, asphalt concrete

resurfacing is represented by a categorical variable (RES) of value 10, with Single
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Bituminous Surface Treatment (SBST) and Double Bituminous Surface Treatment (DBST)

being represented by 1.

Another categorical variable which does not fall under any of the major groups in

Table 3.4 is the HPMS functional classification for highways.  A categorical variable

value of 10 indicates Rural Principal Arterial, Rural Other Principal Arterial, Rural Minor

Arterial, Urban Principal Arterial–Interstate, Urban Freeway/Expressway, Urban Other

Principal Arterial and Urban Minor Arterial.  For brevity this group is referred to as

HPMS, Class I.  A value of 1 is used for Rural Major Collector, Rural Minor Collector

and Rural Local and referred to as HPMS, Class II.  Classification of routes into these

groups is expected to reflect the differences in the strength of sections, quality of

construction, volume of traffic, and type of maintenance applied, among others.

In order to take into account the effect of interaction between the explanatory

variables, the product of the variables is considered.  As an example, age alone causes

certain deterioration, and traffic alone causes certain deterioration; however, the synergism

resulting from the combined effect of age and traffic is expected to be more than the sum of

individual effects on pavement deterioration.  Interaction terms account for this synergetic

effect.

Mechanistic parameters such as those indicating strength; e.g., modulus values of

materials in different layers of the pavement, are expected to be factors having significant

influence on the long-term behavior of pavements.  The limitations of the database

precluded the use of these variables.  Other desirable explanatory variables, particularly

for the prediction of rutting, are type of coarse aggregate used, aggregate gradation, voids
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in mineral aggregates, properties of bitumen, etc., cannot be included in the analysis owing

to lack of data.

Summarizing, the MDOT PMS database includes a series of databases that cover

many aspects of the road network.  The six modules of inventory, geometry, construction,

maintenance, traffic, and condition data make up the database.  PCR calculated from the

condition data is also stored in the database.  Pavements are classified into families and

distress attributes required for their maintenance evaluation are listed.  Many explanatory

variables that are expected to influence the performance are elucidated.  They include age,

cumulative ESAL, slab thickness, thickness of overlay, modified structural number, etc.  By

necessity, categorical variables are also employed to augment the pavement attributes.

Making use of these data elements from the database, deterioration/performance models

will be developed.  The details of the developmental effort comprise the next chapter.
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CHAPTER 4

MODELING METHODOLOGY

4.1  INTRODUCTION

As the performance and distress history of a pavement depends on many variables

in extremely complex ways, pavement deterioration models are, in general, empirical or

semi-empirical.  Also, purely mechanistic models predicting primary responses such as

stress, strain, or deflection are not commonly adopted (44) since these responses are not

used as ends in themselves for design, maintenance, or rehabilitation of pavements.  The

prevalent method, however, is to employ time series data and develop regression models.

This study attempts regression models, and in a few cases they are augmented by Bayesian

models as well.

A database of response variables along with all the potential explanatory variables

is compiled from the PMS database.  Usually a PMS database is arranged in some order.

The MDOT-PMS is arranged according to district, route number, county number, direction

of travel, and beginning accumulated log mile.  To eliminate any possible bias, the

database is randomly sorted and divided into two parts, referred to as ‘in-sample’ and

‘out-of-sample’ data.  The in-sample part forms the bulk of the data, about 70 percent,

which will be used in developing the regression equations.

The remaining 30 percent of the data, referred as the “out-of-sample” or “testing

data,” is used for assessing the prediction accuracy of the regression equation.  The out-of-

sample data constitutes approximately 30 percent of the total to ensure that it is statistically

“large.”  Random sorting is important to retain prominent features of data in the “in-

sample” as well as the “out-of-sample” data.
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4.2  REGRESSION MODELING TECHNIQUES

The models for prediction of response variables are developed using the regression

technique.  Initially, scatter plots of response variables against each of the potential

explanatory variables are obtained, determining the likely relationships between response

and explanatory variables.  Also, the plots help in locating obvious errors in the data, if

any.  Various model forms are attempted in an effort to develop the best possible model.

This includes trials with various techniques, such as multiple linear, model with interacting

terms, stepwise, and non-linear regression.  SPSS (45) package is utilized for regression

analysis.

4.2.1  Multiple Linear Forms

Multiple linear regression is one of the most time-honored and widely used

regression techniques for the study of linear relationships among a group of measurable

variables (47).  The basic assumptions are that the random errors are independent, and

normally distributed with zero mean and constant variance.  Based on these assumptions,

multiple regression tries to find a set of parameters ai such that the sum of squared

residuals is minimized, also known as the least squares method.  A linear model uses the

following general form of the equation:

y = a0 + a1x1 + a2x2 + ……..+ anxn  (4.1)

where, y =the response variable to be predicted, such as pavement condition,

distresses, etc.

Multiple linear models are simple and yield solutions easily, as described in the literature

(47-53).  It is imperative that these models be so formatted that they satisfy physically

meaningful boundary conditions.
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HPMS Type Model:  The Highway Performance Monitoring System (HPMS)

predictive models (35) for all major pavement types use an implicit linear equation.  The

nonlinear form is converted to linear form by logarithmic transformation as seen in

Equations 2.32 – 2.36.  Such models are used to predict a composite condition index

(namely Present Serviceability Rating, PSR) in HPMS studies.

4.2.2  Nonlinear Regression

Nonlinear regression models are those in which the parameters of the model are

nonlinearly related.  In many cases nonlinear models are sought instead of linear models

because of certain advantages:

§ To retain a clear interpretation of parameters (54)

§ Uncertainty of linear approximation used for inference can be avoided

§ Parameter estimates of linear models may have undesirable properties

§ Practical, real-world problems are often nonlinear in nature

The linear models, on the other hand, are mathematically easier, with the estimators

of the parameters being obtained from an explicit mathematical expression (55).  For

nonlinear regression models, one must use either an iterative procedure employing a

mathematical algorithm or an exhaustive search procedure.  Also, nonlinear regression

models with more than one explanatory variable, with few exceptions, tend to be

algebraically very complicated.

Different forms of nonlinear models are considered for modeling. Though two

forms are employed in this study, only power form turned out to be relevant in this study.

4.2.2.1  Power Form

A typical power form model employs the product of explanatory variables raised to
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some power.  This type of model is adopted in HPMS (35), Illinois (37), and Virginia (21)

studies.  The general form of the equation is as follows:

y = A0 + A1 X1
A2 X2

A3 X3
A4  (4.2)

where y the response variable, Xi are the explanatory variables, and

A0, A1, A2, A3, and A4 the parameters of the equation.

The desirable properties of the power form of the equation, shown in Figure 4.1, are listed

below:

(a) The response variable increases or decreases monotonically which represents the

real-world physical condition.  The distresses increase monotonically as

represented by curves A, B, C, and PCR decreases monotonically as represented

by the curve D.

(b) The initial condition is satisfied; i.e., the curve starts with an initial value, which

can be employed to represent the zero initial distress (curve B), a fixed value of

initial roughness (curve A), or a starting value of PCR (curve D).

(c) The delay in the development of distress can be represented, e.g., alligator cracks,

or punchouts might appear after a few years as represented by the curve C.

(d) Random distresses appear initially, increase slowly and, thereafter, increase

rapidly due to wear-out, and can be represented by this form of the equation.

4.3  MODELING BY BAYESIAN REGRESSION

In some models a Bayesian regression approach was adopted augmenting the

classical regression approach for a number of reasons.  Generally, the Bayesian approach

allowed the development of better models than could be possible with data alone.  This
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was achieved by combining, using Bayesian regression, the performance data with prior

experience and knowledge (expert opinion) that was available through the engineering staff

of MDOT.

Predictive models require a large number of observations in order to provide a

good coverage of all factors included over a reasonable reference space.  Since the

performance models are fundamentally a function of time, data needs to be available over a

reasonable time span (10-20 years) for pavement being observed.  One solution lies in the

use of Bayesian regression in which the data collected in the traditional manner is

supplemented with “prior” knowledge.  The so-called prior knowledge may be drawn from

expert judgment, “old” data sets, or knowledge that is generally accepted in the field.

Expert judgment can also be encoded by polling experts and asking them to estimate the

value of the dependent variable for a combination of contributory/explanatory variables.

Once compiled, this information would supplement the primary database at hand.  The

prior experience ensures that the resulting performance models spanned the service life of

the pavements.

Bayesian regression relies on two models, the prior model developed from expert

judgment, and the data-model from field data.  The data employed was the same as that

used in classical regression.  Ten experts, each with 10 to 35 years of experience,

participated in developing the prior data.  Experts were briefed on the purpose of the data

explaining the causal variables chosen for predicting a response variable, say, PCR.  Their

judgments (expressed in terms of numerical scores) were encoded using a full-orthogonal

matrix elicitation technique.  Experts were briefed with respect to the problem and

variables in the specified model.  Subsequently they were requested to complete one
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encoding matrix for each pavement similar to the one in Figure 4.2.  Each cell in the matrix

defines a pavement with a specific combination of the four explanatory variables.

Illustrated in Figure 4.2, is a matrix for the PCR of original flexible pavements, duly filled

in by one expert.  Each entry reflects his experience in working with original flexible

pavements in Mississippi.  Since only one equation was desired for each pavement family,

the responses of the 10 experts were pooled to give a single collective prior.

The analysis was performed using XL-BAYS Bayesian regression software, which

runs as an add-in to Microsoft Excel (38).  The program sequentially analyses the prior and

the field data thereby generating the “posterior” model.  For comparison purposes, it

provides a complete statistical summary for the prior model, the data model (identical to

classical regression), and the posterior model.  As the Bayesian regression software is

constrained to use only linear models, Bayesian could not improve all of the prediction

models.  Linear and power equations could be handled, the latter using a linearization

procedure by taking the logarithm of the variables.

In summary, chapter 4 describes modeling methodologies employed in developing

prediction equations.  In essence, regression techniques form the basis of all models, with

some models augmented by expert opinion, for which Bayesian regression methodology is

employed.  Chapter 5 presents the models, explaining in some detail how they were

developed.  The reasonableness of these models is verified by sketching the variation of

the response variable with age and traffic volume (CESAL).
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CHAPTER 5

MODELS, RESULTS, AND DISCUSSIONS

5.1  GENERAL

This chapter documents the models developed for the prediction of distress

(distress groups)/performance of each family of pavements.  Specifically, the explanatory

variables for the models, the forms of the models used and their statistics are explained.

Also documented are Bayesian models for prediction as well as improvement

accomplished using the latter approach.  The last section of this chapter briefly describes a

feedback analysis program.

The sequential steps involved in modeling by regression and by Bayesian are

outlined briefly:

Classical Regression:

1. A database is created which contains the response variables and all the potential

explanatory variables.

2. The database is split into “in-sample” data comprising 70 percent of the data, with

the remaining designated “out-of-sample” for model verification.

3. A form of the model is chosen, and analyzed by stepwise regression.  The procedure

aids in the identification of significant explanatory variables.

4. Regression models are developed with the in-sample data.

5. The predictive capability of the models is evaluated by comparing the predictions

with the out-of-sample data.
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Bayesian Regression:

1. Select independent variables for inclusion in the prediction model.  They need to

be the same as these used in regression modeling.

2. Either by interview or by group discussion, encode the expert’s knowledge in the

form of a matrix (see Figure 4.2).

3. Using the encoding matrix, histograms are prepared to ensure that the expert

opinions are consistent and reasonable.

4. The results provided by the expert-based models (prior data) are combined with

field data using the Bayesian regression software, XL-BAYES (38).

5. The goodness-of-fit of the posterior model is judged by testing for the significance

of the regression parameters.

For each pavement family, the models developed with the in-sample data are

described for each distress/distress group with the corresponding coefficient of

determination (R2), and root mean square error (RMSE).  Following this a few of the

regression models are augmented by expert opinion increasing the inference space of the

data-based model.

5.2  ORIGINAL FLEXIBLE PAVEMENT MODELS

The original flexible pavements are those that are not overlaid, and are in their first

performance period.  The explanatory variables considered are age, CESAL, MSN,

classification of road according to the HPMS system, thickness of surface, and base and

subbase courses.  Note that age enters in the calculation of CESAL.  To evaluate whether

multicollinearity exits between the independent variables, a correlation matrix involving

the dependent variable and the independent variables was computed.  A high R2 value

between any pair of independent variables was construed as an indication of
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multicollinearity .  Another method of checking multicollinearity entails conducting a

residual analysis, the details of which can be seen in references 47 and 48.  The range of

response variables employed in model development is given in Table 5.1, while that for

explanatory variables is given in Table 5.2.  Models developed for each distress/distress

group or performance are described.

Table 5.1 Range of Response Variables Employed in the Development of Models, Original
Flexible Pavements

Response
Variable

Description Range

WCAMH Weighted alligator cracking of medium and high
severity, percent

0 - 28.61

OC Other cracks, percent 0 - 99.98

OCMH Other cracks of medium and high severity, percent 0 - 86.11

RT85 85th percentile rutting, mm 0 - 23.9

IRI Roughness, m/km 0.62 - 3.21

PCR Pavement condition rating 32 - 94

Table 5.2 Range of Explanatory Variables Used in the Development of Models, Original Flexible
Pavements

Range of Explanatory Variables of ModelsExplanatory
Variable

WCAMH OC OCMH RT85 IRI PCR

Age, years 0 - 49 0 - 47 0 - 57 1- 41 0 – 46 0 - 57

18-kips CESAL,
millions

0 -5.66 0 - 5.17 0 - 13.24 0.01-7.08 0 - 9.29 0 - 13.24

MSN 1.71 - 8.14 1.21 - 9.67 1.21 - 9.67 1.77 -
7.93

1.21 - 9.67

5.2.1 Medium and High Severity Alligator Cracking Model

Here the percentage area of medium and high severity alligator cracking is the

response variable.  Efforts to predict medium and high severity alligator cracking areas

(percentage), failed to yield satisfactory prediction models.  This may be due to the fact

that some of the medium severity alligator cracking is transformed into high severity
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alligator cracking in subsequent years.   In such cases, though the percentage area of these

cracks remains the same, there is an increase in severity.  To take into account the severity

effect, weights are introduced for each of these severities:  0.7 for medium severity

alligator cracking, and 1.0 for high severity alligator cracking.  Assigning weights equal to

or less than one ensures that the area of cracking does not exceed the actual pavement area

(100 percent).  The weighted percentage alligator cracking of medium and high severity

(WCAMH) is the response variable to be predicted.

The percentages of alligator cracking for the original flexible pavements are

observed to be low.  Alligator cracking, especially high severity levels, being a serious

distress is probably not allowed to spread over a large area.  Another observation is that

pavements with a modified structural number greater that 5.0 exhibit zero or very low

alligator cracking.

Alligator cracks develop due to fatigue from repeated loading cycles, and are

generally confined to wheelpaths.  Cumulative 18-kip ESAL is, therefore, an important

explanatory variable for the model to predict alligator cracking.  Another explanatory

variable considered is the modified structural number (MSN), an indicator of overall

strength of a pavement.  To account for differences in the design standards, volume of

traffic, and quality of construction, a categorical variable—classification according to

HPMS system—is considered as well.

With little success using the above explanatory variables, age of pavement is

introduced as the fourth explanatory variable.  Age is expected to account for the hardening

of asphalt resulting from loss of volatiles.  Aging of bituminous binder, due primarily to

oxidation, increases the stiffness of both the binder and the surfacing material over time.
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Consequently aging strongly reduces the fatigue life of thin to medium thick surfacing, but

probably has little effect on thick bituminous layers (6).

Using thickness of various layers instead of MSN did not result in a good model.

The best possible model obtained for weighted alligator cracking of medium and high

severity is:

WCAMH = 0.6956 AGE1.3686CESAL 0.8050MSN-1.961 (5.1)

R2 = 0.43, RMSE = 0.22, N = 241

(Note:  CESAL is expressed in millions in Equations 5.1 – 5.35)

The above regression model shows that WCAMH increases with age and cumulative

traffic.  The higher the MSN or the strength of pavement, the lesser the alligator cracks.

To improve the data-model, expert opinion was compiled for WCAMH in the three

families of pavements:  original flexible, overlaid flexible and composite.  How does

expert opinion compare with the field data?  With 86.3 percent of observations reporting

zero WCAMH (see Table 5.3), the data-model predictions are well below those of the

experts (see Figure 5.1).  Nevertheless, combining the expert opinion (prior model) with

data-model is considered important.

The coding results provided by the ten raters were aggregated to form one prior

model which was then combined with the data model.  The analysis was performed using

Bayesian regression software, XL-BAYS.  Since XL-BAYS can handle only linear

models, the model form needs to be restricted to the power form, noting that power
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Table 5.3 and Table 5.4 appear in the original document, but are missing in the files.
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Figure 5.1  Comparison of medium and high severity alligator cracks (WCAMH) predicted
by data-model, expert model, and posterior model in flexible original pavement.
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models could be linearized by logarithmic transformation.  With this transformation the

program sequentially analyses the prior and the field data, thereby generating the posterior

model.  For comparison purposes, it provides a complete statistical summary of the prior

model, the data model, and the posterior model.  XL-BAYS provides a unique feature

which enables the user to obtain probability density functions for the regression

coefficients (for the data-based, expert-based and the combined models) and plot them in

one composite figure for easy comparison.  Comparison of the probability density functions

of a parameter, for example, that of CESAL, is presented in Figure 5.2.  The shape of the

probability density functions (pdf) indicates uncertainty associated with the model

estimates.  Clear from the pdf plots in Figure 5.2 is that the data-model is influenced by the

expert opinion, resulting in a larger exponent for CESAL swinging the trend in favor of the

prior model (expert judgment).  This is an intuitively expected result indicating that the

posterior (combined) model is influenced by both field data and expert judgment.

The posterior model is defined in the following equation:

WCAMH = Age0.9329CESAL0.7331MSN-0.6348 (5.2)

  R2 = 0.29, RMSE = 2.03

As indicated by t-statistics, the significance of the explanatory variables in

descending order is Age, CESAL and MSN.

Comparing the data-model, Equation 5.1, and posterior model, Equation 5.2, it is

noted that predictability of the latter is diminished, as indicated by low R2 and high RMSE.

This anomalous result could be attributed to exceedingly large expert WCAMH values as

compared to MDOT data (see Figure 5.1).  As will be seen again in later
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sections, whenever the two sets of data are exceedingly disparate, the prediction accuracy

of posterior model would invariably suffer.

Comparison predictions graphed in Figure 5.1 clearly show that the posterior

model predicts intermediate values as it is shaped by both data-model and expert opinion.

Nonetheless, posterior model is dominated by expert opinion resulting in relatively high

WCAMH predictions, a valid argument for not recommending this model.

Sensitivity analysis of the influence of age on WCAMH for different traffic levels-

in terms of yearly ESAL (YESAL)-plotted in Figure 5.3, indicates reasonable predictions

throughout a typical life span of 20 years.  Convinced that the predicted values are in the

expected range, this data model (Equation 5.1) is recommended for MDOT PMS.

5.2.2  Model for “Other Cracks” (OC)

The other cracks include low severity alligator, block, edge, longitudinal, and

transverse cracking.  An overall summary of OC cracks and other cracks of medium and

high severity (OCMH) is presented in Table 5.4.  Though only 2.7% of the data registers

zero, numerous sections show extremely small OC crack density, presenting some

problems in developing a satisfactory model.  As in WCAMH cracks, the explanatory

variables identified to have significant influence on other cracks percentage are:  AGE,

CESAL and MSN.  Derived from the in-sample data is the following model:

OC = 0.8892 AGE1.2128CESAL0.6612MSN-0.4606  (5.3)

R2 = 0.44, RMSE = 6.0, N = 718

It is noteworthy that the modified structural number, a measure of load capacity of flexible

pavements, appears in the equation with a negative coefficient.  The negative sign
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Figure 5.3  Variation of medium and high severity alligator cracks (WCAMH ) with age
for a range of traffic levels. Flexible original pavement, (MSN=5).   YESAL
=yearly equivalent single axle loads.
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indicates that the stronger the pavement, the lesser the potential for cracking.

A sensitivity analysis is performed where the evolution of cracks is depicted for

various yearly ESAL levels (see Figure 5.4).  The exponential increase of cracks with age

seems to be in agreement with the field observations in original flexible pavements.  As no

expert opinion was available for OC cracks, Bayesian regression could not be attempted.

5.2.3  Model for “Other Cracks” of Medium and High Severity (OCMH)

This distress group is recognized by MDOT-PMS as a factor in the maintenance

strategy selection.  As encountered with other models of cracking, numerous OCMH values

(79 percent) are zero (see Table 5.4).  Power and exponential models are attempted among

the nonlinear forms.  Though exponential models could yield predictions with medium and

high severity cracks attaining maximum (100 percent) asymptotically, the data structure

was not amenable to this form of equation.  A power model with age and CESAL,

therefore, is adopted here.

OCMH = 1.4378E-3 AGE2.3998CESAL1.1863  (5.4)

R2 = 0.86, RMSE = 1.62, N = 790

The predicted OCMH for the out-of-sample data looked skewed owing to extreme data

spread and numerous zero values.  The trend lines in Figure 5.5 depict the evaluation of

cracks for various traffic levels.  As expected, the OCMH cracks develop at a rapid rate

beyond 10 years, with traffic level playing a major role in crack widening process. The

Bayesian regression model is not attempted for want of expert opinion data.
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Figure 5.4   Variation of other cracks (OC) with age for a range of traffic levels. Flexible
original pavement,  (MSN=5)

Figure 5.5 Variation of medium and high severity other cracks (OCMH) with age for a
range of traffic levels. Flexible original pavement.
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5.2.4  Rutting Model

Rutting is primarily caused by the loading of channelized traffic in a lane.

Therefore, traffic is bound to be an explanatory variable for predicting rutting.  Whether

stronger pavements should show lesser rutting has been debated.  However, the ten experts

seem to be divided on this issue.  Mechanistic parameters such as strength or modulus

values of the various materials could not be included as they are not available in the

database.  A model developed with traffic and MSN did not provide good prediction.

Another model with thickness of surface, base and subbase courses instead of MSN did not

yield good predictions either.

The database compiled from these consecutive surveys (1991, 1993 and 1995)

resulted in the following power model, expressing RT85 in millimeters.

RT85 = 0.4917 AGE0.2852CESAL0.1441 (5.5)

R2 = 0.59, RMSE = 0.15, N = 145

This model, rightly so, shows increased rutting with age and traffic.

In order to augment the model, the data-model and the expert model are combined

employing XL-BAYS.  The resulting two-term model is,

RT85 =AGE0.8307CESAL0.1929 (5.6)

R2 = 0.68, RMSE=4.4

Since the posterior model captures both field data characteristics and expert

opinion, it is not expected to give good predictions with the out-of-sample data.  The data-

model, Equation 5.5, provides good predictions using the 30 percent out-of-sample data.



81

Figure 5.6 Comparison of rutting prediction using data-, expert and Bayesian models.
Flexible original pavement with yearly ESAL=200,000

• Figure 5.7  Variation of International Roughness Index (IRI) with age for a range of
traffic levels. Flexible original pavement, (MSN=5).
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The comparison of RT85 prediction employing the three models resulted in Figure 5.6,

where rut increase is graphed against age for yearly traffic of 200,000 ESAL.  Primarily,

owing to larger data population the posterior model is closer to the data-model than to the

expert model.  That none of the structural variables appears in the model should not be

construed to mean that rutting is not influenced by pavement thickness.  It simply means that

both databases do not suggest such a causal factor.  Having established that the Bayesian

model predicts realistic rutting, we recommend Equation 5.6 for use in the PMS.

5.2.5  Roughness Model

The task here is twofold:  first, to determine the initial value of roughness of newly

constructed roads, and second, to determine the trend of roughness progression.  A study

(50) of roughness values of newly constructed asphalt surfaced pavements in various states

(Kentucky, Georgia, Iowa, and Wisconsin) indicates that an initial IRI of 0.5 m/km is

common for the pavements constructed over the last two decades.  A study of the MDOT-

PMS database shows slightly different numbers, thicker pavement showing smoother

surface initially.

Another special feature of the IRI data, and, for that matter, PCR data as well, is for

the IRI to increase abruptly with low CESAL, say in the zero to 1x106 CESAL interval.

Another trend appears where the IRI increased slowly in the zero to 3x106 CESAL range.

The pavements in the first group belong to low volume traffic roads where the pavement

roughness increases due primarily to environmental effects.  It is the age that matters in this

group of pavements since traffic causes minimal roughness.  In the second group; however,

traffic volume seems to be the key factor that contributes to pavement roughness.  To take
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into account these two groups of pavements, a nonlinear form is selected and fitted to the

data to result in the following equation:

IRI = (2.4169 + Age0.2533 (1+CESAL0.2572)) MSN-0.7753  (5.7)

R2 = 0.35, RMSE = 0.34, N=690

The predictability of the model is substantiated by plotting the calculated IRI

against the measured IRI for the out-of-sample data (see Figure 5.7).  Upon plotting the IRI

with age for typical traffic volumes (MSN constant at 5.0), it is noted that IRI increases

swiftly during the first five years followed by a slow change in the latter years.

5.2.6  PCR Model

Here again, the question of factors affecting the PCR of a newly constructed

pavement arose.  It can be argued that initial PCR may be a function of MSN.  Accordingly,

a model of the type in Equation 5.7 is suggested with Age, CESAL, MSN, and other

explanatory variables such as HPMS classification, with the best model emerging

incorporating three variables:  Age, CESAL and MSN.

PCR = (76.10 – Age0.6696 (1+CESAL0.7100)) MSN0.0979 (5.8)

R2 = 0.53, RSME = 5.0, N = 720

In order to establish the robustness of the model, measured versus actual PCRs of the out-

of-sample data are plotted in Figure 5.8 showing satisfactory prediction capability.

With the expert opinions available, an attempt is made to augment the data-model

using the expert opinion.  Since the field data is not amenable to modeling using the

linear/power forms, the XL-BAYS program could not be used.
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0

Figure 5.8  Comparison of measured and predicted Pavement Condition Rating
using original flexible pavement out-of-sample data.
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Figure 5.9 Comparison of Pavement Condition Rating (PCR) estimated by experts and predicted by data-models. Yearly
ESAL 200,000
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A comparison of the data-model and the expert opinion model, however, is taken up

for which expert opinion model similar to Equation 5.8 is derived.  The expert model matches

the data model for the first eight years, beyond which, however, the experts believe the PCR

drops at a faster pace (see Figure 5.9).  Recognizing that steep PCR drop is inconsistent with

the field observations, the data-model in Equation 5.8, is recommended for PMS use.

5.3  OVERLAID FLEXIBLE PAVEMENT MODELS

Overlaid flexible pavements are flexible pavements that are overlaid at least once and

form a different pavement family requiring separate models.  The response variables used and

their ranges are shown in Table 5.5, while those of explanatory variables are in Table 5.6.

5.3.1 Medium and High Severity Alligator Cracking Model

In addition to the three response variables declared in the alligator crack model for

original asphalt pavements, one additional variable, surface type, was found significant.  The

model equation is:

WCAMH = 0.977E-1 AGE1.8548(1+CESAL0.5336)MSN-1.9370 RES0.1618 (5.9)

 R2 = 0.48, RMSE = 0.32, N = 4353

Table 5.5  Range of Response Variables Employed in the Development of Models,
Overlaid Flexible Pavements

Response
Variable

Description Range

WCAMH Weighted alligator cracking of medium
and high severity, percent

0 – 13.10

OC Other cracks, percent 0 – 89.6

OCMH Other cracks of medium and high
severity, percent

0 – 68.80

RT85 85th percentile rutting, mm 0 – 30.2

IRI Roughness, m/km 0.45 – 9.25
PCR Pavement condition rating 57 – 95
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Figure 5.10  Comparison of measured and predicted medium and high severity alligator
cracks(WCAMH) using out-of-sample data. Overlaid flexible pavement.
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The out-of-sample data is predicted with the model equation plotting the results in Figure

5.10.  That the agreement is fair attests to the viability of the model.  Yet another plot, relating

the variations of alligator cracks with age for typical traffic levels is shown in Figure 5.11.  It

is noted that very little alligator cracking develops during the early life, say, up to 6 years.

Table 5.6  Range of Explanatory Variables Used in the Development of Models, Overlaid
Flexible Pavements

Range of Explanatory Variables of ModelsExplanatory
Variable WCAMH OC OCMH RT85 IRI PCR

Age, years 0 - 49 0 – 37 0 - 26 1.00-9.00 0 - 41 0 - 32

18-kip CESAL,
million

0 - 2.30 0 - 6.76 0 - 4.03 0.30-1.81 0 - 6.76 0 - 6.76

MSN 1.77-9.67 0.61 - 9.52 0.61 - 9.52 0.61-9.52 0.61-9.52

TOPTHK (mm) 3.1-304.8 3.1-254.0 3.1-304.8 3.1-254

RES (categorical) AC Surface                                                                                                          10
DBST or SBST                                                                                                      1

In order to improve the validity of the model, the expert model (prior model) is now

augmented by the data-model employing XL-BAYS.  The experts predicted a different trend in

that the WCAMH increase was slower in the latter years.  The resulting posterior model, as in

the original flexible family, includes only three explanatory variables, AGE, CESAL, and

MSN.  These were the three variables employed in compiling expert opinion.  The posterior

model is,

WCAMH=AGE0.5621CESAL0.1214MSN-0.4962 (5.10)

         R2 = 0.31, RMSE = 2.54

The sensitivity of WCAMH to load levels is graphed in Figure 5.12, with MSN kept

constant (4.0).  Showing little sensitivity to traffic level, alligator cracks begin to appear at a
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Figure 5.11 Variation of medium and high severity alligator cracks (WCAMH) with
age for a range of traffic levels using data-model. Overlaid flexible pavement,
(MSN=4, RES=10)

Figure 5.12 Variation of medium and high severity alligator cracks (WCAMH) with
age for a range of traffic levels using Bayesian model. Overlaid flexible
pavement, (MSN=4).
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very early age, though, the maximum value reaching only 3 percent level after 20 years.  For

the reason that the posterior model underpredicts WCAMH the writer recommends the data

model found in Equation 5.9.

5.3.2 Model for Other Cracks

Besides Age and CESAL, the model warranted two more explanatory variables,

namely, top thickness of the top-most overlay (TOPTHK) and the resurfacing type (RES).  As

dictated by the data, the best-fit model turned out to be of the following form:

OC = 19.1244 AGE0.6167(1+CESAL0.500) TOPTHK-0.6752 RES0.2713 (5.11)

R2 = 0.32,  RMSE = 10,    N = 3036

Among the significant explanatory variables included in the model age, traffic as well

as RES (HMA surface) tend to increase this mode of cracking.  Because of the surface texture

and flexibility perhaps, surface treatment (for example, single or double bituminous surface

treatment) inhibits cracking.

The predictability of the model is investigated employing the out-of-sample data, as

shown in Figure 5.13.  Evident from the data is that the model somewhat under-predicts the

crack density, especially at crack levels above 30%.  The progression of cracks with age for

various traffic volumes (TOPTHK = 50.8 mm (2 inch) and RES = 10) is graphed in Figure

5.14.  It is noteworthy that the cracks begin to develop at very early ages, unlike that in the

original flexible pavements where they are delayed for a few years before they begin

spreading the pavement surface.

5.3.3 Models for Other Cracks of Medium and High Severity

An equation similar in form to that for OC cracks with the same set of five variables is

found to predict medium and high severity other cracks.
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Figure 5.13 Comparison of measured and predicted other cracks (OC) using out-of-
sample data. Overlaid flexible pavement.

Figure 5.14  Variation of other cracks (OC) with age for a range of traffic  levels
using data model. Overlaid flexible pavement, (TOPTHK=50.8mm, RES=10).
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OCMH = 61.367    AGE1.4025 (1+CESAL1.6154) (5.12)

TOPTHK-2.6379  RES1.3710

R2 = 0.51, RMSE = 3.6, N = 4286

The cause-and-effect relationship of this model is identical to that for other cracks, with a

better R2, however.  Note that the large exponent of RES and large negative exponent of

TOPTHK play opposite roles in Equation 5.12, indicating that cracks on HMA surface

generally overtakes those on surface treatment.

The predicted values for the out-of-sample data appear in a horizontal band (see

Figure 5.15), an indication that the model is likely to underpredict.  That numerous sections

are reported to have zero cracks regardless of age and CESAL could be a reason for this

anomalous result.  Figure 5.16 plots the evolution of crack with age for various traffic

volumes (TOPTHK = 50.8 mm (2 inch), HMA resurfacing).  Note that beyond 10 years the

crack density increases at an exponential rate.

5.3.4 Rutting Model

Cumulative traffic and age are identified to be the significant variables for predicting

rutting.  The model for 85th percentile rutting in millimeter units is:

RT85 = 5.22 AGE0.27CESAL0.0600 (5.13)

R2 = 0.47, RMSE = 4.3

Rutting is shown to increase with traffic and age, traffic playing a minor role according to the

data-model (Equation 5.13).

The expert opinion is brought to bear on the data-model employing XL-BAYS.  A

power model with experts’ data is now developed and compared with the data-model noting

that the former predicts much higher rutting distress than that obtained from the data-model.
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Figure 5.15 Comparison of measured and predicted medium and high other cracks
(OCMH) using out-of -sample data.  Overlaid flexible pavement.

Figure 5.16  Variation of medium and high other cracks(OCMH) with age for a
range of traffic levels using data-model.  Overlaid flexible pavement,
(TOPTHK=50.8mm, RES=10)
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This finding is not unexpected because of numerous sections (nearly 60 percent) showing

rutting less than 6.4mm (1/4 inch).  With such large disparity between the prior model and the

data-model, a compromise model is sought with Bayesian regression.  The model with the

same two variables is:

RT85 = 5.2498 AGE0.3583CESAL0.2524 (5.14)

R2=0.47,RMSE=4.3,N=252

The sensitivity of the posterior model is investigated by plotting the rutting

progression with age at various traffic volumes as shown in Figure 5.17.  Unlike the data-

model, rutting is strongly influenced by traffic in the posterior model.  With a traffic volume of

150,000 ESALs annually, a rutting of 17 mm in 15 years is judged to be reasonable;

accordingly, Equation 5.14 is recommended for MDOT’s pavement management.

5.3.5 Roughness Model

The roughness model has to satisfy the initial condition in that the initial IRI soon after

overlay should be a function of structural number, the most recent overlay thickness and a

secondary variable, the resurfacing type.  The model form with five variables satisfies those

criteria.

IRI = (3.5746 + Age0.1701 (1+CESAL0.6972)) (5.15)

MSN-0.3438   TOPTHK-0.1313   RES-0.1056

R2 = 0.48, RMSE = 0.38, N = 4109

Note that the initial value of IRI is not only a function of MSN, as in the original flexible

pavement model, but also influenced by overlay thickness and surface type.  As expected, a

HMA surface results in lower initial roughness than surface treatment.  The thicker the
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Figure 5.17  Variation of 85th percentile rutting (RT85) with age for a range of traffic
levels using Bayesian model.  Overlaid flexible pavement.
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overlay the smoother the road initially, continuing to be smooth throughout its life span.  As in

the original flexible pavement model, thicker pavements inhibit road roughness.

The predictability of the model is substantiated by comparing the measured and

predicted IRI values of the out-of-sample data (see Figure 5.18).  That the plotted points align

along the line of equality indicates the robustness of the model.  How the model predicts road

roughness with age for various traffic levels (keeping MSN=4.0, TOPTHK=50.8mm (2 inch)

and RES=10) is graphed in Figure 5.19.  The predictions are judged to be reasonable,

attesting the viability of the model.

5.3.6 PCR Model

Not only does the model need to describe the trend in PCR, it also has to predict the

initial PCR.  As in the IRI model, five variables are included in the analysis to result in the

following equation:

PCR = (70.69 – Age0.6471 (1+CESAL0.7564)) MSN0.0291 TOPTHK0.0272 RES0.0198 (5.16)

R2 = 0.43, RMSE = 4.7, N = 4062

As expected, the model predicts slightly higher PCR for HMA surface.  Increased

MSN, TOPTHK or HMA surface, in contrast to surface treatment, results in higher PCR in

this family of pavements.

The adequacy of the model is investigated by comparing the predicted and measured

PCR values of the out-of-sample data (see Figure 5.20).  That the plotted points align along

the line of equality attests to the validity of the model.  Figure 5.21 depicts how PCR
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Figure 5.18 Comparison of measured and predicted International Roughness Index (IRI) using
out-of-sample data.  Overlaid flexible pavement.

Figure 5.19 Variation of International Roughness Index (IRI) with age for a range of
traffic levels using data-model.  Overlaid flexible pavement, (MSN=4,
TOPTHK=50.8mm, RES=10).
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Figure 5.20 Comparison of measured and predicted Pavement Condition Rating
(PCR) using out-of -sample data.  Overlaid flexible pavement.

Figure 5.21 Variation of Pavement Condition Rating (PCR) with age for a range of
traffic levels using data-model.  Overlaid flexible pavement, (MSN=4,
TOPTHK=50.8mm, RES=10)
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decreases with age for various traffic levels, with MSN = 4.0, TOPTHK = 50.8mm (2 inch)

and HMA surface.  The predicted PCRs at different ages seem to be reasonable.

With the expert opinion available, an attempt is made to augment the data-model with

the expert opinion model.  For not being able to develop a linear or power model with the

field data, a necessary requirement to use XL-BAYS program, the Bayesian model could not

be pursued.

Nonetheless, it is interesting to investigate how the data model compares with the

expert opinion model.  With a power model fitted for the expert opinion, the PCR trend of the

two models with age is plotted in Figure 5.9.  As in the original flexible models, the trend

lines nearly coincide for the first seven-year life span, beyond which the expert predictions

substantially deviate from the data model, with the expert opinion model under-predicting

PCR, and in turn, the road’s condition.  Accordingly, the data-model, Equation 5.16, is

recommended in lieu of the expert opinion model.

5.4  COMPOSITE PAVEMENT MODELS

As in overlaid flexible pavements, the primary explanatory variables considered

include age and traffic.  As a measure of structural capacity, thickness of the last overlay is

considered as an explanatory variable as well.  Tables 5.7 and 5.8 present the range of

response and explanatory variables, respectively.

Table 5.7 Range of Response Variables Employed in the Development of Models, Composite
Pavements

ResponseVariable Description Range

WCAMH Weighted alligator cracking of medium and high
severity, percent

0 – 3.0

OC Other cracks, percent 0 – 51.6
OCMH Other cracks of medium and high severity, percent 0 – 14.0
RT85 85th percentile rutting, mm 0 – 30.2

IRI Roughness, m/km 0.66 – 3.25
PCR Pavement condition rating 56 – 94
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Table 5.8 Range of Explanatory Variables Used in the Development of Models for Composite
Pavements

Range of Explanatory Variables of ModelsExplanatory
Variable

WCAMH OC OCMH RT85 IRI PCR

Age, years 0 – 22 0 - 30 0 - 28 1.00-11.00 0 - 30 0 - 29

18-kip CESAL,
million

0 - 6.40 0 - 8.94 0 - 8.64 0.08-2.15 0 - 8.94 0 - 8.94

TOPTHK , mm 6.4 - 457.2 6.4 - 457.2 6.4 - 457.2 2.65-11.56 6.4 - 356.0 6.4 - 356.0

5.4.1 Medium and High Severity Alligator Cracking Model

Besides age and traffic, the data dictated one more explanatory variable for Predicting

WCAMH in composite pavements.  The thickness of the most recent overlay (TOPTHK)

emerged as that variable.  As can be seen in Table 5.3, numerous sections were devoid of

alligator cracking.  A three-variable equation is derived as follows:

WCAMH = 0.7213E-4 Age4.0617 (1+CESAL0.5940) TOPTHK-0.5690 (5.17)

R2 = 0.53, RMSE = 0.10, N = 1143

Evaluations of WCAMH with age for various traffic volumes are graphed in Figure 5.22.  The

alligator cracks increase exponentially beyond 15 years.

With expert opinion tabulated and available, it is incorporated in the data-model

employing XL-BAYS.  The resulting posterior equation again includes the same three

variables as in Equation 5.17.

WCAMH = Age1.5150 CESAL0.5800 TOPTHK-0.7800 (5.18)

R2 = 0.34, RMSE = 0.98

Evolution of alligator cracking when subjected to various levels of traffic loading TPTHK

=50.8mm (2 inch), is shown in Figure 5.23.  Comparing Figures 5.22 and 5.23, it is noted that

the posterior model predictions are high compared to the other two families of flexible

pavements, intuitively an unacceptable result.  With reasonable WCAMH predictions as
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Figure 5.22  Variation of Medium and high severity alligator cracks  (WCAMH) with
age for a range of traffic levels using data model.  Composite pavement,

(TOPTHK=50.8mm).

Figure 5.23 Variation of Medium and high severity alligator cracks (WCAMH) with
age for a range of traffic levels using Bayesian model. Composite pavement,

(TOPTHK=50.8mm).
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shown in Figure 5.22, the data-model, Equation 5.17 is recommended in lieu of Equation 5.18.

5.4.2 Other Cracks Model

The same three variables as for WCAMH evolved as the prominent explanatory

variables.  The equation is:

OC = 15.50  Age0.5786  (1+CESAL0.5345) TOPTHK-0.4298 (5.19)

R2 = 0.43,  RMSE = 5.53,  N = 1292

The model predictability is illustrated by plotting the actual OC against predicted OC of the

out-of-sample data (see Figure 5.24).  Note that the plotted points are aligned close to the line

of equality.  Further investigation of the effect of age and traffic level on OC cracks is

undertaken, keeping TOPTHK constant at 50.8mm (2 inches), with the results graphed in

Figure 5.25. The cracks begin to appear at early age and continue to accumulate until the

pavement is totally cracked.  The early distresses could be attributed to block cracking and

reflection cracking, which are caused by thermal shrinking, an age-dependent phenomenon.

This is especially true for thin overlays, typically 76.2mm (3 inches) or less.  In general,

reflection cracks develop fairly early in composite pavements due to differential movement of

underlying slab.  On the other hand, block cracking progresses at a steady rate in the early

period, attaining a maximum value of 100 percent in due course.

5.4.3  Models for Other Cracks of Medium and High Severity

The model for predicting other cracks of medium and high severity (OCMH

percentage) is:

OCMH = 0.8267E-2   Age2.309 (1+CESAL1.4460) TOPTHK-0.2338 (5.20)

R2 = 0.68, RMSE = 0.56, N = 1148
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Figure 5.24  Comparison of measured and predicted other cracks (OC) using
out-of-sample data. Composite pavement.

Figure 5.25 Variation of other cracks (OC) with age for a range of traffic
Levels using data model. Composite pavement, (TOPTHK=50.8mm).
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OCMH tends to increase with age and traffic volume.  Thicker overlays inhibit this class of

cracks.  First, the OCMH of the out-of-sample data is predicted with the equation and plotted

against the measured values, (see Figure 5.26). While the agreement is good, it is noted that

the crack density is relatively small, for instance, less than 4 percent.  Second, the evolution of

OCMH at different traffic levels (at constant TOPTHK of 50.8mm) is graphed in Figure 5.27.

As these cracks form through an evolutionary process, it may be several years before they

would become noticeable.  The delay period appears to be approximately 6 years, as per the

model equation.

5.4.4  Rutting Model

In addition to age and traffic volume, thickness of the most recent overlay is significant

in the prediction of pavement rutting (85th percentile):

RT85 = Age0.3690CESAL0.1300TOPTHK0.4200 (5.21)

Unlike that in the overlaid pavement the thickness of the most recent overlay appears to be a

significant variable, where rutting increases with overlay thickness.

With realistic expert opinion on pavement rutting, the data-model is incorporated in

the expert model employing XL-BAYS.  The resulting posterior model has the same variables

but with somewhat different exponents:

RT85 = Age0.1217CESAL0.4973TOPTHK0.4506 (5.22)

R2 = 0.78, RMSE = 3.4

Note that the exponent of traffic is increased from 0.13 to 0.50 signifying that the posterior

model relies heavily on traffic volume to predict rutting.  Importance of age is overshadowed

by CESAL in this model.

The sensitivity of the model is explored by predicting rutting with age in roads
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Figure 5.26 Comparison of measured and predicted medium and high other cracks
(OCMH) using out-of-sample data.  Composite pavement.

Figure 5.27 Variation of medium and high other cracks (OCMH) with age for a range
of traffic levels using data-model.  Composite pavement, (TOPTHK=50.8mm).

0
1

2
3

4

5
6

7

8
9

0 1 2 3 4 5 6 7 8 9

Measured OCMH, percent

P
re

d
ic

te
d

 O
C

M
H

, p
er

ce
n

t

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Age, year

O
C

M
H

, p
er

ce
n

t

YESAL=40000

YESAL=80000

YESAL=150000
YESAL=200000

YESAL=250000



106

with various traffic volumes, keeping the TOPTHK constant at 50.8mm (2 inch).  It is

encouraging to note that the rate of rutting declines with age.  Eighty-fifth percentile rutting of

the order of 15mm in 15 years and 2.25 x 106 CESAL seems reasonable (see Figure 5.28).

Accordingly, the Bayesian Model (Equation 5.22) is recommended for MDOTs’ PAP.

5.4.5  Roughness Model

The roughness model needs to satisfy an initial condition which in all likelihood

would be dependent on the overlay thickness.  Only three explanatory variables appear

significant in the following model for IRI:

IRI = (3.095 + Age0.3571 (1+ CESAL0.3054)) TOPTHK-0.3235 (5.23)

R2 = 0.53, RMSE = 0.10, N = 1143

Note the initial roughness decreases with increase in overlay thickness.  While IRI increases

with age and CESAL, TOPTHK promotes smoother road surface.

The predictability of the model is substantiated by comparing measured and predicted

IRI values of the out-of-sample data.  The scatter of plotted points in Figure 5.29 indicates that

the model could under-predict the IRI of very rough roads.  How roughness evolves with age

at various traffic levels, for a typical overlay thickness of 50.8mm (2 inches), can be seen in

Figure 5.30.  With reasonable predictions recorded, the model is recommended for MDOT

pavement management system.

5.4.6 PCR Model

Again, the model has to describe the trend in PCR with time and traffic as well as

predict an initial value.  A three-variable equation is found to fit these requirements:
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Figure 5.28 Variation of 85th percentile rutting (RT85) with age for a range of traffic
levels using Bayesian model.  Composite pavement, (TOPTHK=50.8mm).
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Figure 5.29 Comparison of measured and predicted roughness, IRI, using out-of-
sample data. Composite pavement.

Figure 5.30 Variation of roughness, IRI, with age for a range of traffic levels using
data-model. Composite pavement, (TOPTHK=50.8mm).
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PCR = (56.87 – Age0.5681 (1+CESAL0.7154)) TOPTHK0.1045 (5.24)

R2 = 0.53, RMSE = 4.00, N = 1060

The thicker overlay not only results in higher initial PCR but also maintains a superior

pavement surface with time/traffic.  The predictability of the model is investigated by

computing the PCR of the out-of-sample data and comparing them with the measured values

(see Figure 5.31).  The agreement is satisfactory.  Graphed in Figure 5.32 are trend lines

depicting PCR decrease with age at various traffic levels, holding the overlay thickness

constant at 50.8mm.  Note that realistic PCRs are predicted by the model.

The quest for a Bayesian regression model is dropped as the expert opinion model

projects very low PCR values all throughout the life of the pavement (see Figure 5.9).

Neither the initial PCR of 76 nor the 15-year projected PCR of 43 for a 76mm overlay seems

reasonable.  Accordingly, the data-model, Equation 5.24, is recommended for PCR

prediction.

5.5 MODELS FOR JOINTED CONCRETE PAVEMENTS

For jointed concrete pavements the following explanatory variables are considered:

age, CESAL, thickness of slab, type of base course, and classification of road according to the

HPMS system.  The range of the response variables are listed in Table 5.9 and the

explanatory variables in Table 5.10.

Table 5.9 Range of Response Variables Used in the Development of Models for Jointed Concrete
Pavements

Response Variable Description Range

AC Cracks, percent 0 – 4.63

SP Spalling, percent 0 – 1.4

IRI Roughness, m/km 0.70 – 5.77

PCR Pavement Condition Rating 42 – 94
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Figure 5.31 Comparison of measured and predicted Pavement Condition Rating
(PCR) using out-of-sample data.  Composite pavement.

Figure 5.32 Variation of Pavement Condition Rating (PCR) with age for a range of
traffic levels using data-model.  Composite pavement, (TOPTHK=50.8mm).

50

60

70

80

90

100

50 60 70 80 90 100

Measured PCR

P
re

di
ct

ed
 P

C
R

40

50

60

70

80

90

100

0 5 10 15 20 25
Age, year

P
C

R

YESAL=40000

YESAL=80000

YESAL=150000

YESAL=200000
YESAL=250000



111

Table 5.10 Range of Explanatory Variables Used in the Development of Models, Jointed Concrete
Pavements

Range of Explanatory Variables of ModelsExplanatory Variable

AC SP IRI PCR
Age, years 0 - 60 0 - 65 0 - 65 0 - 65

18-kip CESAL, million 0 - 26.83 0 - 13.5 0 - 34.3 0 - 34.3

Slab thickness, mm 127 - 330 127 - 330 127 - 330

5.5.1 Model for Cracking

Amongst the many explanatory variables considered, only three appear significant:

age, traffic, and slab thickness.  The model is:

AC = 2.4118 (Age – 3)0.2465 CESAL0.5473 SLABTHK-0.3735 (5.25)

R2 = 0.28, RMSE = 0.88, N = 213

The age-shift of three years simply means that the pavement could be practically crack-free

during this period.  As per the model, thicker slab, rightly so, inhibits crack density.

Understandably, cracks increase with age and traffic.

Illustrated in Figure 5.33 is a comparison of measured versus predicted cracks

employing the out-of-sample data.  The plotted points are distributed over a wide band with

respect to the line of equality, a marginally acceptable result.  The sensitivity of the model is

investigated in Figure 5.34, where crack density is plotted against age at various traffic

volumes, keeping the slab thickness constant at 254mm (10 inch).  Two and one-half percent

cracks in 20 years for a yearly traffic volume of 250,000 ESALs appears reasonable.

5.5.2 Spalling Model

Initiated by ambient environment, joints begin to spall rapidly with traffic volume

aided by extreme temperature variations (51).  With only two variables significant in
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Figure 5.33 Comparison of measured and predicted all cracks (AC) using out-
of-sample data. Jointed concrete pavement.

Figure 5.34 Variation of all cracks (AC) with age for a range of traffic levels
using data-model. Jointed concrete pavement, (SLABTHK=254mm).
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predicting spall, the model becomes:

SP = 0.4647*E-2 Age0.7885 CESAL0.8506 (5.26)

  R2 = 0.59, RMSE = 0.13, N = 117

Judging from the nearly equal exponents for age and traffic, it may be in order to presume their

influence on spall to be nearly identical.  Despite expectations that HPMS Class I pavements

might show fewer spalled joints, the data fails to reflect such a trend.  Thickness of slab is not

found to be significant either.

The model predictability is evaluated by comparing the predicted spalling with the

measured, for the out-of-sample data (see Figure 5.35).  In pavements with minor spalling, the

agreement is marginal, to say the least.  The question whether the model can predict realistic

spalling density can be seen in Figure 5.36, where spalling with age is plotted for a range of

traffic levels.  Spalling of the order of 0.5% in 30 years is considered realistic, a testament to

the validity of the model.

5.5.3 Roughness Model

A survey (50) of initial roughness of jointed concrete pavements constructed in

various states indicates that many newly constructed jointed concrete pavements exhibit an

initial roughness of 0.7m/km.  A slightly higher value is indicated by MDOT data, however.

The best-fit model for IRI is:

IRI = 1.1+23.3647  Age0.2952  CESAL0.3152  SLABTHK-0.8071 (5.27)

R2 = 0.30,    RMSE = 0.54,    N = 205

The model indicates that roughness increases with age and traffic, but decreases with slab

thickness.  Because of higher load carrying capacity thicker slabs deflect less at joints,

reducing the potential for loss of support, and in turn, reduced faulting.  Pumping
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Figure 5.35 Comparison of measured and predicted spalling (SP) using out-of-sample
data. Jointed concrete pavement.

Figure 5.36 Variation of spalling (SP) with age for a range of traffic levels using data-
model. Jointed concrete pavement.
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tendency is also reduced with thicker slab, leading to a smoother pavement.

The out-of-sample data is employed to plot predicted versus actual IRI, resulting in

Figure 5.37.  That the data points cluster along the line of equality is an indication of

acceptable predictability of the model.  Another plot depicting IRI increase with age for

various traffic levels for SLABTHK = 254mm (10 inch) is presented in Figure 5.38.  That the

pavement roughness increases to 2.5 m/km in 30 years at 250,000 yearly ESAL is judged to be

reasonable, providing the necessary credence to the model.

5.5.4 PCR Model

With the basic premise that the model has to satisfy both initial pavement condition

and change in PCR with time/traffic, a three-variable model is derived employing the

database:

PCR = (51.1 – 0.1603 E-3 Age1.9270 (27 + CESAL1.9000)) SLABTHK0.1000 (5.28)

R2 = 0.48, RMSE = 5.82, N = 154

The model, rightly so, predicts better pavement condition with thicker slabs.

Comparing the expert model with the data model, it becomes clear that the experts

believe that the pavement condition deteriorates faster than that predicted by the data- model.

Therefore, a compromise model is sought employing Bayesian regression.  By necessity the

data-model, the expert model, and the posterior model should be in power form.  In the

Bayesian formulation slab thickness is not significant:

PCR = 90 – Age0.6741 CESAL0.4924 (5.29)

R2 = 0.59, RMSE = 7.25, N = 398

The sensitivity of the model is investigated by plotting PCR with age at various traffic
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Figure 5.37 Comparison of measured and predicted International Roughness
Index (IRI) using out-of-sample data.  Jointed concrete pavement.

Figure 5.38 Variation of International Roughness Index (IRI) with age for a
range of traffic levels using data-model.  Jointed concrete pavement,
(SLABTHK=254mm).
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levels.  It is noteworthy that both time as well as traffic affect the pavement condition with

nearly equal weight, signifying the importance of both environmental and load factors (see

Figure 5.39).  Being able to predict realistic PCR values, the Bayesian model, Equation 5.29,

is recommended for MDOT PMS.

5.6 CONTINUOUSLY REINFORCED CONCRETE PAVEMENT MODELS

The explanatory variables considered for this pavement type are age, CESAL, and

slab thickness.  A cursory study of the data revealed that almost all of the CRC pavement

sections (approximately 98 percent) in Mississippi have one thickness, namely 202mm (8

inches).  Without data from a range of slab thickness, it could not be included as an

explanatory variable.  The range of response variables is listed in Table 5.11 and the

explanatory variables in Table 5.12.

Table 5.11 Range of Response Variables Used in the Development of Models, Continuously
Reinforced Concrete Pavements

Response Variable Description Range

AC Cracks, percent 0 – 7.2
PO Punchouts, number/km 0 – 26.2
IRI Roughness, m/km 1.4 – 4.1

PCR Pavement Condition Rating 60 – 90

Table 5.12 Range of Explanatory Variables Used in the Development of Models for Continuously
Reinforced Concrete Pavements

Range of Explanatory Variables of ModelsExplanatory Variable

AC PO # IRI PCR

Age, years 0 - 36 0 - 35 0 – 33 0 - 36

18-kip CESAL, million 0 - 32.9 0 - 18.3 0 - 20.8 0 - 41.8
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Figure 5.39 Variation of Pavement Condition Rating (PCR) with age for a
range of traffic levels, using Bayesian model. Jointed concrete
pavement.
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5.6.1 Model for Cracks

At the outset it should be remarked that low severity transverse cracks caused by

shrinkage (inherent in CRC pavements) are not counted while quantifying this distress

category.  The model for medium and high severity transverse cracks (including other modes

of cracks) is:

AC = 0.1013 (Age-10)0.5837 CESAL0.6095 (5.30)

R2 = 0.44, RMSE = 0.87, N = 91

The age-shift indicates that those medium/high severity cracks would be delayed for about 10

years.  Even with substantial exponents for age and traffic, the model under-predicts in

comparison to experts’ opinion.  In order to strengthen the model, therefore, expert opinion is

incorporated employing Bayesian regression.  The posterior model again with the two

variables is:

AC = 0.731E-1 (Age-10)0.3448 CESAL1.2377 (5.31)

R2 = 0.63, RMSE = 1.34, N = 179

The age-shift of 10 years is again retained in the model.  Note the posterior model predictions

fall between the expert opinion and the data-model predictions.  That is, the posterior model

reconciles the expert opinion and the data.  Presented in Figure 5.40 is a graphical

representation of increase in cracks with age for a range of traffic volumes.  Typically, a

prediction of 4.5 percent cracks in 30 years when sustaining an annual traffic of 400,000 is

reasonable.  The Bayesian model, Equation 5.31 is the writer’s recommendation.

5.6.2 Punchout Model

A cursory examination of the data reveals that out of the sections for which
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Figure 5.40  Variation of all cracks (AC) with age for a range of traffic levels
using Bayesian model. Continuously reinforced concrete pavement.

Figure 5.41 Variation of punchouts (PO) with age for a range of  traffic levels
using Bayesian model. Continuously reinforced concrete pavement.
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punchout information is available, only 24 percent of the data had more than one punchout/km.

This low punchout count could perhaps be attributed to MDOT practice of rehabilitating them

promptly and, therefore, not interpretable in the video survey.  A two-variable model is

derived for punchouts in CRC:

PO = 0.4454 * E-3 (Age –10)1.4095 CESAL1.3575 (5.32)

R2 = 0.75, RMSE = 0.13, N = 151

That punchouts begin to appear only after 10 years in service is noted from the equation.  Even

with sufficiently large exponents for age and CESALs, the model under-predicts punchout, for

example 0.9 punchouts/km with 30 years of 400,000 ESALs annually.

The experts predict much higher punchout counts, as verified in the expert opinion

matrix.  Encouraged by this data, Bayesian regression is employed to incorporate data-model

in the expert model.  The posterior equation is:

PO = 0.33 (Age – 10)0.2571 CESAL0.4163 (5.33)

R2 = 0.48,  RMSE = 0.57,  N = 110

Why R2 decreased from 0.75 for the data-model to 0.48 for the posterior model warrants

explanation.  That the expert opinion differed significantly from the field data could be the

major reason for this anomaly.  Combining two disparate databases to develop a single model

would likely bring down the coefficient of determination from their individual coefficients.

A sensitivity study, where punchout count is plotted against age for various traffic

levels, can be seen in Figure 5.41.  The resulting model is improved, in that it predicts 2.2

punchouts/km after 30 years of traffic at 400,000 ESAL yearly.  The posterior model is the

choice of the writer for MDOT PMS.

5.6.3 Roughness Model
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Newly constructed CRC pavements show initial roughness somewhat comparable to

that in jointed concrete pavements.  CRC pavements in Illinois showed an average roughness

value of 1.18m/km, while those in Kansas showed 0.94m/km (50).  These high values are

expected because of longer slabs which undergo warping.  An IRI of 1.0m/km, therefore, is

chosen as the initial condition.  The roughness model developed is:

IRI = 1 + 0.4218 Age0.1008 CESAL0.4186 (5.34)

R2 = 0.48, RMSE = 0.32, N = 146

Employing the out-of-sample data, the predictability of the model is checked plotting actual

versus predicted IRI values.  The large scatter in Figure 5.42, perhaps, is an indication of the

influence of other variables, such as construction quality, that are not quantifiable at this time.

Graphs in Figure 5.43 support the view that IRI is sensitive to both age and traffic volume,

though the predominance of the latter factor cannot be overlooked.  With reasonable

predictions, Equation 5.34 is recommended to MDOT.

5.6.4 PCR Model

As in all other four PCR models, the model should accommodate an initial value,

consistent with the roughness of new construction.  A two-variable model is shown to forecast

pavement condition, as per the MDOT pavement data:

PCR = 91 – Age0.4085   CESAL0.5299 (5.35)

R2 = 0.65, RMSE = 2.72, N = 119

With the model generally over-predicting the pavement condition in relation to what

the experts believe, Bayesian regression is employed to combine the two.  A power model

resulted from this analysis with nearly same coefficient of correlation:
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Figure 5.42 Comparison of measured and predicted International Roughness Index
(IRI) using out-of-sample data.  Continuously reinforced concrete pavement.

Figure 5.43 Variation of International Roughness Index (IRI) with age for a range of
traffic levels using data-model.  Continuously reinforced concrete pavement.
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PCR = 92 – Age0.6463 CESAL0.2731 (5.36)

R2 = 0.61, RMSE = 2.75, N = 181

Judged by the t-statistic, the age variable is highly significant.  It is noteworthy that the initial

PCR value of 92 corresponds to an IRI of 1m/km, exactly matching the initial value of IRI

model for CRC pavement.  Graphing the Bayesian model (see Figure 5.44), we note that

pavement condition is influenced by both time and traffic.  The traffic seems to have less

effect in comparison to age, for the reason CRC is structurally sound to resist traffic loads.

Judging the model to be providing reasonable predictions, the Bayesian model, Equation 5.36,

is recommended to MDOT.

5.7 PROJECT LEVEL DISTRESS/PERFORMANCE PREDICTION

For applications at the project level, corrections are to be applied to the predictions

based on the observed data.  These corrections are necessary to account for the differences in

the long-term behavior of individual pavements from the predictions that are mean

deterioration trends of the pavement family.

Different procedures are suggested in the literature (52, 21) for adjustment of the

pavement family model for individual projects.  The prediction relation of a pavement family

represents the average behavior of all the sections of that family.  The prediction of each

project/section is accomplished by shifting its position relative to the family prediction curve.

It is assumed that the deterioration of all pavements in a family is similar.  In practice,

therefore, when the observed deterioration of pavement differs from that predicted by the

model, the model should be adjusted to pass through the observed point.  Predictions for

future years are then made using this augmented curve.

One method (52) is to draw a curve through the observed point parallel to the
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Figure 5.44 Variation of Pavement Condition Rating (PCR) with age for a range of
traffic levels using Bayesian model. Continuously reinforced concrete
pavement.
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developed model as shown in Figure 5.45.  Since age is predominant explanatory variable,

the horizontal shift is mathematically performed by solving the model equation for the AGE

that corresponds to the observed pavement deterioration.  Future predictions are made

assuming that the calculated age is the current age for the section.

A second approach (53) is to shift the curve vertically instead of horizontally as in

Figure 5.46, so that it passes through the observed point.  This is done by using the actual

deterioration (D1) of the pavement and the predicted deterioration (D2) for computing an

adjustment factor defined by AF = D1/D2.  Future predictions are made by multiplying the

predicted deterioration by the adjustment factor (AF).  This method seems to be more

appropriate where all the involved explanatory variables are employed in prediction rather

than adjusting for only the main explanatory variable.

5.8  ENGINEERING FEEDBACK SYSTEM

The feedback module, as envisioned in the original proposal, was to ensure continual

feedback of information assessing pavement system condition, and also for

verification/substantiation of the design standards and/or specifications.  Described briefly

are three submodules of the feedback system that were completed and submitted to MDOT on

31 July 1998.

1. The module that calculates the load index for the three types of pavements  (flexible,

CRC and jointed concrete), as originally built.  Load index is the ratio of the actual

ESAL and the design ESAL.  Design ESAL is calculated using the design equations

proposed in the 1993 Revised AASHTO Guide.

2. The module that calculates the load index of overlaid flexible pavements, and
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that too only for the first overlay.  Again, AASHTO flexible pavement design equation

is used for this purpose.  For use in the equation, the structural number of an overlaid

pavement is calculated with the revised layer coefficient of the asphalt concrete

surface, according to Transportation Management Information System (TMIS).  Design

equations for other types of overlaid pavements are not readily available, therefore,

those calculations are deferred in this version of the program.

3. The third module calculates the ratio of the actual and the predicted distress of each

section of each pavement family; for example, five distresses and PCR for original

flexible, overlaid flexible, and composite pavement types.  For distress predictions,

equations submitted to MDOT on 1 July 1997 were employed.  Note the feedback

program was submitted to MDOT on 31 July 1998.  This comparison enables us to

validate the prediction models.

The feedback module may be implemented in such a way that it can access present and

past condition data and all other inventory databases.  With this information assembled

from the MDOT PMS databases, feedback analyses results can be output in the form of

reports and tables.

5.9 Summary

The models developed in the study indicate that the most important variables affecting

deterioration of all pavement types are age, cumulative traffic, and modified structural

number/slab thickness.  Thickness of overlay is a significant explanatory variable in

composite pavements.  HPMS functional classification and resurfacing type are other

variables in overlaid flexible pavement.
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Age is a factor that appears in all of the models.  It is a factor that represents

deterioration of pavements due to environment and/or other damage that cannot be accounted

for by traffic or other factors.  A question arises as to why age plays such a dominant role in

relation to the cumulative traffic.  That age can be determined very precisely is the first and

foremost reason for its significance in the model.  Second, age enters into the estimation of

cumulative traffic as well as the environmental loading cycles (33).  Between age and ESAL,

ESAL would be the weakest link in the cumulative traffic computation because of inclusion of

several questionable input parameters for ESAL calculation (these include sample traffic

count, growth factor, and truck factor).  Between age and CESAL, the former satisfies the

assumptions required for regression modeling, discussed herein.  Age is nonstochastic, that is,

its value is fixed and it is measured without error.  By virtue of these facts, age would be a

better explanatory variable than CESAL.

Modified structural number, as seen in models for flexible (both original and

overlaid), does not seem to play a major part in the prediction.  The first reason is that the

pavements are designed for the expected level of traffic, with heavily trafficked roads being

provided with thicker pavement sections compared to lightly trafficked ones.  Therefore, the

deterioration rates of thick and thin pavements are expected to be nearly identical.  The

second reason is that even nominally identical pavement sections show spatial variation in

strength properties, local deficiencies in construction, change in conditions along stretches

(for example, high water table), and other variations making the MSN data ‘noisy’.  Noisy

data simply suppresses the explanatory variables’ effect on the response variable.

Cumulative traffic, expected to be the main factor causing deterioration, is also a

significant factor in all the models.  Stronger pavements, in general, should undergo slower
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deterioration, and the inclusion of a strength indicator (MSN, thickness of overlay, or

thickness of slab) in most of the models is justified.

5.9.1 Summary of Significant Variables for Each Pavement Family

The results of the sensitivity-study suggest that age is the most significant factor

affecting the deterioration of original flexible pavements.  Cumulative traffic, rightly so, is the

second most significant factor for the prediction of other cracks, roughness, and PCR.  The

modified structural number appears in four models except in those for medium and high

severity other cracks, and rutting.

As in the case of original flexible pavements, age and traffic play the most significant

role in distress prediction for overlaid flexible pavements.  Modified structural number

and/or TOPTHK and resurfacing type are other explanatory variables in all of the models

except for WCAMH.

For composite pavements, besides age and traffic, thickness of overlay is the most

important variable affecting deterioration.  In the same vein, in the models for jointed concrete

pavements, slab thickness appears in addition to age and traffic.  In the case of continuously

reinforced concrete pavements, age and traffic are the only two variables significant enough to

appear in the models.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 SUMMARY

The focus of the study has been to develop deterioration/performance models for

pavements for use in pavement management analysis algorithms.  The models are derived such

that they satisfy many physical and boundary conditions with known causal variables.  In

contrast to many other studies cited in the literature, actual data on pavements are employed

rather than accelerated road test data.  Another characteristic feature of the study is the

application of Bayesian regression employing expert opinion to augment data-models.

Deterioration models are developed for distress/distress groups employed in the

decision tree for maintenance strategy selection adopted by MDOT-PMS.  The models are

derived using the in-sample data and subsequently verified using the out-of-sample data.  As

deemed appropriate, Bayesian models are attempted in 14 different distresses. Only seven of

them are found to generate models superior to the corresponding data models.

6.1.1 Regression Models

Various model forms were attempted in the study but only nonlinear ones are

employed because of their prediction capability.  Multiple linear models do not satisfy the

required boundary conditions, including monotonic variation (increase or decrease) of the

deterioration rates.  The primary advantage of the general power form and exponential form of

the nonlinear models is that they do not rely on fixed exponents, such as squares or cubic

powers.  This flexibility in the exponent immensely improves the modeling process.  Lack of

distress data in severely deteriorated pavements precluded the use of exponential forms in any

of the models.  Out of a total of 26 equations, 19 are regression models and the remaining 7
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are Bayesian models.  Because of the large disparity between the field data and the expert

opinion, Bayesian regression for four distresses produced models whose predictions are

suspect.  In three cases -  PCR models of three flexible families -  the data models appeared

satisfactory, accordingly, they are preferred over Bayesian models.  The models are listed in

Tables 6.1-6.5, one table for each family.

Table 6.1 - Deterioration Models for Original Flexible Pavements

DISTRESS MODEL
Weighted Alligator Cracking of
Medium and High Severity,
percent

WCAMH = 0.6956 AGE1.3686 CESAL0.8050 MSN-1.961

Other Cracks, percent OC = 0.8892 AGE1.2128 CESAL0.6612 MSN-0.4606

Other Cracks of Medium and
High Severity, percent

OCMH = 0.1438 E-2 AGE2.3998 CESAL1.1863

85th Percentile Rutting, mm RT = AGE0.8307 CESAL0.1929

Roughness, (IRI) m/km IRI = (2.4169+AGE0.2533(1+CESAL0.2572))MSN-0.7753

PCR PCR = (76.10-AGE0.6696 (1+CESAL0.7100))MSN0.0979

Table 6.2 – Deterioration Models for Overlaid Flexible Pavements

DISTRESS MODEL
Weighted Alligator Cracking of
Medium and High Severity,
percent

WCAMH = 0.977E-1 AGE1.8548 (1+CESAL0.5336)MSN-1.9370

                                RES0.1618

Other Cracks, percent OC = 19.1244 AGE0.6167 (1+CESAL0.5000) TOPTHK-0.6752 RES0.2713

Other Cracks of Medium and
High Severity, percent

OCMH = 61.367 AGE1.4025 (1+CESAL1.6154) TOPTHK-2.6379

                           RES1.3710

85th Percentile Rutting, mm RT85 = 5.2498 AGE0.3583 CESAL0.2524

Roughness, (IRI) m/km IRI = (3.5746 + AGE0.1701 (1+CESAL0.6972))MSN-0.3438

TOPTHK-0.1313  RES-0.1056

PCR PCR = (70.69-AGE0.6471 (1+CESAL0.7564))MSN0.0291 TOPTHK0.0272

RES0.0198
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Table 6.3 – Deterioration Models for Composite Pavements

DISTRESS MODEL

Weighted Alligator
Cracking of Medium and
High Severity, percent

WCAMH = 0.7213 E-4 AGE4.0617(1+CESAL0.5940)TOPTHK-0.5690

Other Cracks, percent OC = 15.50 AGE0.5786(1+CESAL0.5345)TOPTHK-0.4298

Other Cracks of Medium
and High Severity, percent

OCMH = 0.8267 E-2 AGE2.3090(1+CESAL1.4460)TOPTHK-0.2338

85th Percentile Rutting, mm RT85 = AGE0.1217CESAL0.4973TOPTHK0.4506

Roughness, (IRI) m/km IRI = (3.095+AGE0.3571(1+CESAL0.3054))TOPTHK-0.3235

PCR PCR = (56.87-AGE0.5681(1+CESAL0.7154))TOPTHK0.1045

Table 6.4 – Deterioration Models for Jointed Concrete Pavements

DISTRESS MODEL
Cracks, percent AC = 2.4118(AGE-3)0.2465CESAL0.5473 SLABTHK-0.3735

Spalling, percent SP = 0.4647E-2 AGE0.7885 CESAL0.8506

Roughness, (IRI) m/km IRI = 1.1 + 23.3647AGE0.2952CESAL0.3152 SLABTHK-0.8071

PCR PCR = 90.00 – AGE0.6741 CESAL0.4924

Table 6.5 – Deterioration Models for Continuously Reinforced Concrete Pavements
DISTRESS MODEL

Cracks, percent AC = 0.731E-1 (AGE-10)0.3448 (CESAL)1.2377

Punchout, #/ km PO = 0.33 (AGE-10)0.2571 (CESAL)0.4163

Roughness, (IRI) m/km IRI = 1+0.4218 AGE0.1008 CESAL0.4186

PCR PCR = 92.00-AGE0.6463 CESAL0.2731

6.2 CONCLUSIONS

Making use of data collected in four cycles (1991, 1993, 1995 and 1997), 26

distress/performance models were developed.  The models were evaluated and shown to

provide adequate prediction capability.  The explanatory variables strike physically

meaningful relationships with the response variables, indicating that the equations more or

less assume a cause-effect relationship.  Comparing the models’ prediction with observed
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values from a sample data set not used in their development (out-of-sample) demonstrated

their accuracy to be quite reasonable.

Although this study focused on MDOT’s data, many of the following conclusions may

be applicable to other pavement networks:

1. By adopting an appropriate classification scheme, pavement age can be the most

significant predictor of deterioration.

2. Second only to age, traffic plays a role in pavement deterioration.  One reason for this

is the fact that age and cumulative traffic for each pavement section are correlated,

though overall correlation between the two causal factors is very low.  Moreover, age

can be determined so precisely in comparison to the traffic that the former factor alone

can explain a large portion of the variation (33).

3. The use of categorical variables to differentiate between different bases, surface

types, etc., helps account for the discrete characteristics of materials.

4. For all pavement types, the power model form seems adequate.

5. For prediction models to be applicable in individual sections shift adjustment is

necessary.

6.3 Implementation

The models developed in the first phase of the study have already been incorporated in

the Pavement Analysis Program (PAP) of MDOT.  They serve a pivotal role in pavement

analysis, namely, forecasting future distress levels of the network thereby enabling engineers

and managers in estimating resources required to maintain the system at acceptable levels.

Also, planning future maintenance will be immensely benefited from the models.  Not only
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future maintenance, but also future conditions could be estimated by making use of PCR

models.

The feedback system also can be implemented in the MDOT PMS with ease.  Menu

driven and user friendly, the program interacts with the five PMS databases and can access

summary distress data from the interface program.  The feedback module works in conjunction

with prediction models, verifying condition prediction and design assumptions.

6.4 Benefits

The principal benefit of pavement performance models stems from being able to

assess the overall condition of the network in the future years.  Distress prediction models

forecast anticipated distress in the future, subscribing to cost-effective rehabilitation strategy

selection.  Performance models are extremely useful at the management/policy-making levels.

At project level, the remaining life of the pavement sections can be objectively assessed

employing distress prediction models.  Information of this type provides for identifying

unforeseen/premature failure of pavement sections.  Prediction models in general are useful

for evaluating new designs, and provide a tool which can be used readily to refine designs

and evaluate the long-term effects of specific design assumptions.

The feedback module, utilizing the PMS database, makes calculations

substantiating/reinforcing the existing design procedures.  Specifically it can evaluate the

effectiveness of design procedures, and importantly verify the accuracy of the prediction

models.
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APPENDIX

PAVEMENT REHABILITATION STRATEGY SELECTION DECISION TREES
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